Relaxation autowaves in a bi-local neuron model
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 1, pp. 41-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

A so-called bi-local neuron model is considered, which is a system of two identical nonlinear delay equations linked by means of linear diffusion terms. It is shown that for an appropriate choice of parameters there exist two stable relaxation cycles in this system, which transform one into the other after interchanging the coordinate variables.
@article{MMO_2020_81_1_a1,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Relaxation autowaves in a bi-local neuron model},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {41--85},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a1/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Relaxation autowaves in a bi-local neuron model
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2020
SP  - 41
EP  - 85
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a1/
LA  - ru
ID  - MMO_2020_81_1_a1
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Relaxation autowaves in a bi-local neuron model
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2020
%P 41-85
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a1/
%G ru
%F MMO_2020_81_1_a1
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Relaxation autowaves in a bi-local neuron model. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 1, pp. 41-85. http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a1/

[1] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Ob odnom sposobe matematicheskogo modelirovaniya khimicheskikh sinapsov”, Differents. uravn., 49:10 (2013), 1227–1244 | MR | Zbl

[2] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaksatsionnye avtokolebaniya v setyakh impulsnykh neironov”, UMN, 70:3(423) (2015), 3–76 | MR | Zbl

[3] G. E. Hutchinson, “Circular causal systems in ecology”, Ann. N. Y. Acad. of Sci., 50 (1948), 221–246 | DOI

[4] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, “Ob odnoi modifikatsii uravneniya Khatchinsona”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2099–2112 | MR | Zbl

[5] I. Antoniou, I. Prigogine, V. Sadovnichii, S. A. Shkarin, “Time operator for diffusion”, Chaos, Solitons and Fractals, 11 (2000), 465–477 | DOI | MR | Zbl

[6] Yu. S. Kolesov, “Relaksatsionnye avtovolny”, Differents. uravn., 45:6 (2009), 772–787 | MR | Zbl

[7] A. Yu. Kolesov, N. Kh. Rozov, “Avtovolnovye protsessy v tsepochkakh diffuzionno svyazannykh uravnenii s zapazdyvaniem”, UMN, 67:2(404) (2012), 109–156 | MR | Zbl

[8] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Ustoichivyi relaksatsionnyi tsikl v bilokalnoi neironnoi modeli”, Differents. uravn., 54:10 (2018), 1313–1337 | Zbl