On the existence of an operator group generated by the one-dimensional Dirac system
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 275-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the one-dimensional Dirac operator with a complex-valued summable potential. The possibility of constructing an operator group generated by this operator is investigated in various spaces. Estimates are established for the growth of the group constructed.
@article{MMO_2019_80_2_a8,
     author = {A. M. Savchuk and I. V. Sadovnichaya},
     title = {On the existence of an operator group generated by the one-dimensional {Dirac} system},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {275--294},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a8/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - I. V. Sadovnichaya
TI  - On the existence of an operator group generated by the one-dimensional Dirac system
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2019
SP  - 275
EP  - 294
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a8/
LA  - ru
ID  - MMO_2019_80_2_a8
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A I. V. Sadovnichaya
%T On the existence of an operator group generated by the one-dimensional Dirac system
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2019
%P 275-294
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a8/
%G ru
%F MMO_2019_80_2_a8
A. M. Savchuk; I. V. Sadovnichaya. On the existence of an operator group generated by the one-dimensional Dirac system. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 275-294. http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a8/

[1] Savchuk A. M., Shkalikov A. A., “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR | Zbl

[2] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988

[3] Thaller B., The Dirac equation, Springer, Berlin, 1992 | MR

[4] Amenta A., Auscher P., Elliptic boundary value problems with fractional regularity data, CRM Monograph Series, 37, AMS, Providence, RI, 2018 | DOI | MR | Zbl

[5] Christ M., Kiselev A., “Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials”, Geom. Funct. Anal., 12:6 (2002), 174–1234 | DOI | MR

[6] Denisov S. A., “On the existence of wave operators for some Dirac operators with square summable potential”, Geom. Funct. Anal., 14:3 (2004), 529–534 | DOI | MR | Zbl

[7] Denisov S. A., “Continuous analogs of polynomials orthogonal on the unit circle and Kreĭn systems”, IMRS Int. Math. Res. Surv., 2006, 54517, 1–148 | MR

[8] Elton D. M., Levitin M., Polterovich I., “Eigenvalues of a one-dimensional Dirac operator pencil”, Ann. Henri Poincaré, 15:12 (2014), 2321–2377 | DOI | MR | Zbl

[9] Cuenin J. C., Siegl P., “Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications”, Lett. Math. Phys., 108:7 (2018), 1757–1778 | DOI | MR | Zbl

[10] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | Zbl

[11] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s potentsialami–raspredeleniyami”, Tr. MMO, 64, 2003, 159–212 | Zbl

[12] Albeverio S., Hryniv R. O., Mykytyuk Ya., “Inverse spectral problems for Dirac operators with summable potentials”, Russian J. Math. Phys., 12:4 (2005), 406–423 | MR | Zbl

[13] Dzhakov P., Mityagin B. S., “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera i Diraka”, UMN, 61:4(370) (2006), 77–182 | DOI | Zbl

[14] Djakov P., Mityagin B., “Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, Indiana Univ. Math. J., 61:1 (2012), 359–398 | DOI | MR | Zbl

[15] Djakov P., Mityagin B. S., “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators”, J. Funct. Anal., 263:8 (2012), 2300–2332 | DOI | MR | Zbl

[16] Baskakov A. G., Derbushev A. V., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. matem., 75:3 (2011), 3–28 | DOI

[17] Savchuk A. M., Sadovnichaya I. V., “Bazisnost Rissa so skobkami dlya sistemy Diraka s summiruemym potentsialom”, Sovrem. matem. Fund. napr., 58, 2015, 128–152

[18] Lunyov A. A., Malamud M. M., “On the Riesz basis property of root vectors system for $2\times2$ Dirac type operators”, J. Math. Anal. Appl., 441:1 (2016), 57–103 | DOI | MR | Zbl

[19] Eckhardt J., Kostenko A., Teschl G., “Inverse uniqueness results for one-dimensional weighted Dirac operators”, Spectral theory and differential equations, Amer. Math. Soc. Transl. Ser. 2, 233, AMS, Providence, RI, 2014, 117–133 | MR | Zbl

[20] Gomilko A. M., “Ob usloviyakh na proizvodyaschii operator ravnomerno ogranichennoi $C_0$–polugruppy operatorov”, Funkts. analiz i ego pril., 33:4 (1999), 66–69 | DOI | Zbl

[21] Shkalikov A. A., “Teoremy tauberova tipa o raspredelenii nulei golomorfnykh funktsii”, Matem. sb., 123(165):3 (1984), 317–347 | Zbl

[22] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 27:4 (1971), 15–47

[23] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[24] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[25] Berg I., Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980