Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2019_80_2_a8, author = {A. M. Savchuk and I. V. Sadovnichaya}, title = {On the existence of an operator group generated by the one-dimensional {Dirac} system}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {275--294}, publisher = {mathdoc}, volume = {80}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a8/} }
TY - JOUR AU - A. M. Savchuk AU - I. V. Sadovnichaya TI - On the existence of an operator group generated by the one-dimensional Dirac system JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2019 SP - 275 EP - 294 VL - 80 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a8/ LA - ru ID - MMO_2019_80_2_a8 ER -
%0 Journal Article %A A. M. Savchuk %A I. V. Sadovnichaya %T On the existence of an operator group generated by the one-dimensional Dirac system %J Trudy Moskovskogo matematičeskogo obŝestva %D 2019 %P 275-294 %V 80 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a8/ %G ru %F MMO_2019_80_2_a8
A. M. Savchuk; I. V. Sadovnichaya. On the existence of an operator group generated by the one-dimensional Dirac system. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 275-294. http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a8/
[1] Savchuk A. M., Shkalikov A. A., “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR | Zbl
[2] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988
[3] Thaller B., The Dirac equation, Springer, Berlin, 1992 | MR
[4] Amenta A., Auscher P., Elliptic boundary value problems with fractional regularity data, CRM Monograph Series, 37, AMS, Providence, RI, 2018 | DOI | MR | Zbl
[5] Christ M., Kiselev A., “Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials”, Geom. Funct. Anal., 12:6 (2002), 174–1234 | DOI | MR
[6] Denisov S. A., “On the existence of wave operators for some Dirac operators with square summable potential”, Geom. Funct. Anal., 14:3 (2004), 529–534 | DOI | MR | Zbl
[7] Denisov S. A., “Continuous analogs of polynomials orthogonal on the unit circle and Kreĭn systems”, IMRS Int. Math. Res. Surv., 2006, 54517, 1–148 | MR
[8] Elton D. M., Levitin M., Polterovich I., “Eigenvalues of a one-dimensional Dirac operator pencil”, Ann. Henri Poincaré, 15:12 (2014), 2321–2377 | DOI | MR | Zbl
[9] Cuenin J. C., Siegl P., “Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications”, Lett. Math. Phys., 108:7 (2018), 1757–1778 | DOI | MR | Zbl
[10] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | Zbl
[11] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s potentsialami–raspredeleniyami”, Tr. MMO, 64, 2003, 159–212 | Zbl
[12] Albeverio S., Hryniv R. O., Mykytyuk Ya., “Inverse spectral problems for Dirac operators with summable potentials”, Russian J. Math. Phys., 12:4 (2005), 406–423 | MR | Zbl
[13] Dzhakov P., Mityagin B. S., “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera i Diraka”, UMN, 61:4(370) (2006), 77–182 | DOI | Zbl
[14] Djakov P., Mityagin B., “Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, Indiana Univ. Math. J., 61:1 (2012), 359–398 | DOI | MR | Zbl
[15] Djakov P., Mityagin B. S., “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators”, J. Funct. Anal., 263:8 (2012), 2300–2332 | DOI | MR | Zbl
[16] Baskakov A. G., Derbushev A. V., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. matem., 75:3 (2011), 3–28 | DOI
[17] Savchuk A. M., Sadovnichaya I. V., “Bazisnost Rissa so skobkami dlya sistemy Diraka s summiruemym potentsialom”, Sovrem. matem. Fund. napr., 58, 2015, 128–152
[18] Lunyov A. A., Malamud M. M., “On the Riesz basis property of root vectors system for $2\times2$ Dirac type operators”, J. Math. Anal. Appl., 441:1 (2016), 57–103 | DOI | MR | Zbl
[19] Eckhardt J., Kostenko A., Teschl G., “Inverse uniqueness results for one-dimensional weighted Dirac operators”, Spectral theory and differential equations, Amer. Math. Soc. Transl. Ser. 2, 233, AMS, Providence, RI, 2014, 117–133 | MR | Zbl
[20] Gomilko A. M., “Ob usloviyakh na proizvodyaschii operator ravnomerno ogranichennoi $C_0$–polugruppy operatorov”, Funkts. analiz i ego pril., 33:4 (1999), 66–69 | DOI | Zbl
[21] Shkalikov A. A., “Teoremy tauberova tipa o raspredelenii nulei golomorfnykh funktsii”, Matem. sb., 123(165):3 (1984), 317–347 | Zbl
[22] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 27:4 (1971), 15–47
[23] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969
[24] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[25] Berg I., Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980