Ordinary differential operators and the integral representation of sums of certain power series
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 157-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

The explicit form of the eigenvalues and eigenfunctions is known for certain operators generated by symmetric differential expressions with constant coefficients and self-adjoint boundary conditions in the space of Lebesgue square-integrable functions on an interval, and their resolvents are known to be integral operators. According to the spectral theorem, the kernels of these resolvents satisfy a certain bilinear relation. Moreover, each such kernel is the Green's function of some self-adjoint boundary value problem and the method of constructing it is well known. Consequently, the Green's functions of these problems can be expanded in a series of eigenfunctions. In this paper, the identities obtained in this way are applied to construct an integral representation of sums of certain power series and special functions, and in particular, to evaluate sums of some converging number series.
@article{MMO_2019_80_2_a2,
     author = {K. A. Mirzoev and T. A. Safonova},
     title = {Ordinary differential operators and the integral representation of sums of certain power series},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {157--177},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a2/}
}
TY  - JOUR
AU  - K. A. Mirzoev
AU  - T. A. Safonova
TI  - Ordinary differential operators and the integral representation of sums of certain power series
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2019
SP  - 157
EP  - 177
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a2/
LA  - ru
ID  - MMO_2019_80_2_a2
ER  - 
%0 Journal Article
%A K. A. Mirzoev
%A T. A. Safonova
%T Ordinary differential operators and the integral representation of sums of certain power series
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2019
%P 157-177
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a2/
%G ru
%F MMO_2019_80_2_a2
K. A. Mirzoev; T. A. Safonova. Ordinary differential operators and the integral representation of sums of certain power series. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 2, pp. 157-177. http://geodesic.mathdoc.fr/item/MMO_2019_80_2_a2/

[1] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1963

[2] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976

[3] Mirzoev K. A., Safonova T. A., “Funktsiya Grina obyknovennykh differentsialnykh operatorov i integralnoe predstavlenie summ nekotorykh stepennykh ryadov”, Doklady RAN, 482:5 (2018), 500–503 | DOI

[4] Mirzoev K. A., Safonova T. A., “Ob integralnom predstavlenii summ nekotorykh stepennykh ryadov”, Matem. zametki, 106:3 (2019), 470–475 | DOI

[5] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, V 3 t, v. 1, Elementarnye funktsii, Fizmatlit, M., 2002

[6] Trikomi F., Integralnye uravneniya, IIL, M., 1960

[7] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York, 1972 | MR

[8] Cvijović D., “New integral representations of the polylogarithm function”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2080 (2007), 897–905 | DOI | MR | Zbl

[9] Cvijović D., Klinowski J., “Integral representations of the Riemann zeta function for odd-integer arguments”, J. Comput. Appl. Math., 142:2 (2002), 435–439 | DOI | MR | Zbl

[10] Duffy Dean G., Green's functions with applications, Studies in Advanced Math., CRC Press, 2001 | MR | Zbl

[11] Lewin L., Polylogarithms and associated functions, Elsevier Science Ltd, New York–Oxford, 1981 | MR