On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 113-131
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the investigation of solvability and asymptotic properties of solutions for some classes of nonlinear multidimensional integral equations. These equations have a direct application in the theory of the geographical spread of an epidemic. Constructive theorems of the existence of monotonous and bounded solutions are proved and qualitative properties of solutions are studied. Concrete examples of equations of the considered type, arising in real biological processes, are given.
@article{MMO_2019_80_1_a4,
author = {A. G. Sergeev and Kh. A. Khachatryan},
title = {On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {113--131},
publisher = {mathdoc},
volume = {80},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a4/}
}
TY - JOUR AU - A. G. Sergeev AU - Kh. A. Khachatryan TI - On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2019 SP - 113 EP - 131 VL - 80 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a4/ LA - ru ID - MMO_2019_80_1_a4 ER -
%0 Journal Article %A A. G. Sergeev %A Kh. A. Khachatryan %T On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic %J Trudy Moskovskogo matematičeskogo obŝestva %D 2019 %P 113-131 %V 80 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a4/ %G ru %F MMO_2019_80_1_a4
A. G. Sergeev; Kh. A. Khachatryan. On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 113-131. http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a4/