Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2019_80_1_a4, author = {A. G. Sergeev and Kh. A. Khachatryan}, title = {On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {113--131}, publisher = {mathdoc}, volume = {80}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a4/} }
TY - JOUR AU - A. G. Sergeev AU - Kh. A. Khachatryan TI - On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2019 SP - 113 EP - 131 VL - 80 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a4/ LA - ru ID - MMO_2019_80_1_a4 ER -
%0 Journal Article %A A. G. Sergeev %A Kh. A. Khachatryan %T On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic %J Trudy Moskovskogo matematičeskogo obŝestva %D 2019 %P 113-131 %V 80 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a4/ %G ru %F MMO_2019_80_1_a4
A. G. Sergeev; Kh. A. Khachatryan. On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 113-131. http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a4/
[1] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl
[2] Diekmann O., “Limiting behaviour in an epidemic model”, Nonlinear Anal., 1:5 (1976/77), 459–470 | DOI | MR
[3] Diekmann O., “Run for your life. A note on the asymptotic speed of propagation of an epidemic”, J. Differential Equations, 33:1 (1979), 58–73 | DOI | MR | Zbl
[4] Khachatryan A. Kh., Khachatryan Kh. A., “O razreshimosti nekotorykh nelineinykh integralnykh uravnenii v zadachakh rasprostraneniya epidemii”, Matematicheskaya fizika i prilozheniya, Sbornik statei. K 95–letiyu so dnya rozhdeniya akademika V. S. Vladimirova, Tr. MIAN, 306, 2019 (to appear)
[5] Khachatryan Kh. A., “O razreshimosti odnoi granichnoi zadachi v $p$–adicheskoi teorii strun”, Tr. MMO, 79, no. 1, 2018, 117–132 | Zbl
[6] Kolmogorov A. N., Fomin V. S., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1980
[7] Kermack W. O., McKendrick A. G., “A contribution to the mathematical theory of epidemics”, Proc. Royal Soc., 115:772 (1927), 700–721 | DOI | Zbl