On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 113-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the investigation of solvability and asymptotic properties of solutions for some classes of nonlinear multidimensional integral equations. These equations have a direct application in the theory of the geographical spread of an epidemic. Constructive theorems of the existence of monotonous and bounded solutions are proved and qualitative properties of solutions are studied. Concrete examples of equations of the considered type, arising in real biological processes, are given.
@article{MMO_2019_80_1_a4,
     author = {A. G. Sergeev and Kh. A. Khachatryan},
     title = {On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {113--131},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a4/}
}
TY  - JOUR
AU  - A. G. Sergeev
AU  - Kh. A. Khachatryan
TI  - On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2019
SP  - 113
EP  - 131
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a4/
LA  - ru
ID  - MMO_2019_80_1_a4
ER  - 
%0 Journal Article
%A A. G. Sergeev
%A Kh. A. Khachatryan
%T On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2019
%P 113-131
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a4/
%G ru
%F MMO_2019_80_1_a4
A. G. Sergeev; Kh. A. Khachatryan. On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 113-131. http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a4/

[1] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl

[2] Diekmann O., “Limiting behaviour in an epidemic model”, Nonlinear Anal., 1:5 (1976/77), 459–470 | DOI | MR

[3] Diekmann O., “Run for your life. A note on the asymptotic speed of propagation of an epidemic”, J. Differential Equations, 33:1 (1979), 58–73 | DOI | MR | Zbl

[4] Khachatryan A. Kh., Khachatryan Kh. A., “O razreshimosti nekotorykh nelineinykh integralnykh uravnenii v zadachakh rasprostraneniya epidemii”, Matematicheskaya fizika i prilozheniya, Sbornik statei. K 95–letiyu so dnya rozhdeniya akademika V. S. Vladimirova, Tr. MIAN, 306, 2019 (to appear)

[5] Khachatryan Kh. A., “O razreshimosti odnoi granichnoi zadachi v $p$–adicheskoi teorii strun”, Tr. MMO, 79, no. 1, 2018, 117–132 | Zbl

[6] Kolmogorov A. N., Fomin V. S., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1980

[7] Kermack W. O., McKendrick A. G., “A contribution to the mathematical theory of epidemics”, Proc. Royal Soc., 115:772 (1927), 700–721 | DOI | Zbl