Weakly homoclinic groups of ergodic actions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 97-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The homoclinic group of an ergodic action was introduced by M. I. Gordin. The present paper establishes a connection between homoclinic groups and the factors of an action and the K-property. We introduce the concept of a weakly homoclinic group and demonstrate the completeness of its trajectory. We prove the ergodicity of weakly homoclinic groups of Gaussian and Poisson actions. We establish the triviality of homoclinic groups for the classes of rank-one actions and the connection between weakly homoclinic groups and such asymptotic invariants as rigidity of action, local rank, and weak multiple mixing. We consider other analogues of homoclinic groups and discuss unsolved problems.
@article{MMO_2019_80_1_a3,
     author = {V. V. Ryzhikov},
     title = {Weakly homoclinic groups of ergodic actions},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a3/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Weakly homoclinic groups of ergodic actions
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2019
SP  - 97
EP  - 111
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a3/
LA  - ru
ID  - MMO_2019_80_1_a3
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Weakly homoclinic groups of ergodic actions
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2019
%P 97-111
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a3/
%G ru
%F MMO_2019_80_1_a3
V. V. Ryzhikov. Weakly homoclinic groups of ergodic actions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 97-111. http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a3/

[1] Gordin M. I., “Gomoklinicheskaya versiya tsentralnoi predelnoi teoremy”, Zap. nauchn. sem. LOMI, 184, 1990, 80–91 | Zbl

[2] King J. L., “On M. Gordin's homoclinic question”, Internat. Math. Res. Notices, 1997, no. 5, 203–212 | DOI | MR | Zbl

[3] Ryzhikov V. V., “Ergodicheskie gomoklinicheskie gruppy, sidonovskie konstruktsii i puassonovskie nadstroiki”, Tr. MMO, 75, no. 1, 2014, 93–103 | Zbl

[4] Ratner M., “Raghunathan's topological conjecture and distributions of unipotent flows”, Duke Math. J., 63:1 (1991), 235–280 | DOI | MR | Zbl

[5] Roy E., “Poisson suspensions and infinite ergodic theory”, Ergodic Theory Dynam. Systems, 29:2 (2009), 667–683 | DOI | MR | Zbl

[6] Leonov V. P., “Primenenie kharakteristicheskogo funktsionala i semiinvariantov k ergodicheskoi teorii statsionarnykh protsessov”, DAN SSSR, 133:3 (1960), 523–526 | Zbl

[7] Ledrappier F., “Un champ markovien peut être d'entropie nulle et mélangeant”, C. R. Acad. Sci. Paris Sér. A, 287:7 (1978), 561–563 | MR | Zbl

[8] Tikhonov S. V., “Ob otsutstvii kratnogo peremeshivaniya i tsentralizatore sokhranyayuschikh meru deistvii”, Matem. zametki, 97:4 (2015), 636–640 | DOI | Zbl

[9] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980

[10] Vershik A. M., “Obschaya ergodicheskaya teoriya grupp preobrazovanii s invariantnoi meroi. Gl. 5. Traektornaya teoriya”, Dinamicheskie sistemy – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 2, VINITI, M., 1985, 89–106

[11] Austin T., “Measure concentration and the weak Pinsker property”, Publ. Math. IHES, 128:1 (2018), 1–119 | DOI | MR | Zbl

[12] Segal I. E., “Tensor algebras over Hilbert spaces. I”, Trans. AMS, 81 (1956), 106–134 | DOI | MR | Zbl

[13] Segal I. E., “Ergodic subgroups of the orthogonal group on a real Hilbert space”, Ann. of Math. (2), 66 (1957), 297–303 | DOI | MR | Zbl

[14] Vershik A. M., “Obschaya teoriya gaussovykh mer v lineinykh prostranstvakh. Zasedaniya Leningradskogo matematicheskogo obschestva”, UMN, 19:1(115) (1964), 210–212

[15] Ismagilov R. S., “Ob unitarnykh predstavleniyakh gruppy diffeomorfizmov prostranstva $R^n$, $n\geq 2$”, Matem. sb., 98(140):1(9) (1975), 55–71 | Zbl

[16] Neretin Yu. A., “O sootvetstvii mezhdu bozonnym prostranstvom Foka i prostranstvom $L^2$ po mere Puassona”, Matem. sb., 188:11 (1997), 19–50 | DOI | Zbl

[17] Parreau F., Roy E., “Prime Poisson suspensions”, Ergodic Theory Dynam. Systems, 35:7 (2015), 2216–2230 | DOI | MR | Zbl

[18] Ryzhikov V. V., Tuveno Zh.-P., “Diz'yunktnost, delimost i kvaziprostota sokhranyayuschikh meru deistvii”, Funkts. analiz i ego pril., 40:3 (2006), 85–89 | DOI | Zbl

[19] Katok A. B., Stepin A. M., “Approksimatsii v ergodicheskoi teorii”, UMN, 22:5(137) (1967), 81–106 | Zbl

[20] Ornstein D. S., “On the root problem in ergodic theory”, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, v. II, Probability theory, Univ. California Press, Berkley, 1972, 347–356 | MR | Zbl

[21] Rudolph D., “An example of measure-preserving map with minimal self-joinings, and applications”, J. Analyse Math., 35 (1979), 97–122 | DOI | MR | Zbl

[22] Ryzhikov V. V., “Dzhoiningi i kratnoe peremeshivanie deistvii konechnogo ranga”, Funkts. analiz i ego pril., 27:2 (1993), 63–78

[23] Ryzhikov V. V., “Lokalnyi rang ergodicheskoi simmetricheskoi stepeni $T^{\odot n}$ ne prevoskhodit $n!n^{-n}$”, Funkts. analiz i ego pril., 47:1 (2013), 92–96 | DOI

[24] Ryzhikov V. V., “Ogranichennye ergodicheskie konstruktsii, diz'yunktnost i slabye predely stepenei”, Tr. MMO, 74, no. 1, 2013, 201–208 | Zbl

[25] Dekking F. M., Keane M., “Mixing properties of substitutions”, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 42:1 (1978), 23–33 | DOI | MR | Zbl

[26] Goodman S., Marcus B., “Topological mixing of higher degrees”, Proc. AMS, 72:3 (1978), 561–565 | DOI | MR | Zbl

[27] de la Rue Th., “Rang des systèmes dynamiques gaussiens”, Isr. J. Math., 104 (1998), 261–283 | DOI | MR | Zbl