Finite-dimensional approximations to the Poincar\'e--Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 1-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study formally self-adjoint boundary value problems for elliptic systems of differential equations in domains with periodic (in particular, cylindrical) exits to infinity. Statements of problems in a truncated (finite) domain which provide approximate solutions of the original problem are presented. The integro-differential conditions on the artificially formed end face are interpreted as a finite-dimensional approximation to the Steklov–Poincaré operator, which is widely used when dealing with the Helmholtz equation in cylindrical waveguides. Asymptotically sharp approximation error estimates are obtained for the solutions of the problem with the compactly supported right-hand side in an infinite domain as well as for the eigenvalues in the discrete spectrum (if any). The construction of a finite-dimensional integro-differential operator is based on natural orthogonality and normalization conditions for oscillating and exponential Floquet waves in a periodic quasicylindrical end.
@article{MMO_2019_80_1_a0,
     author = {S. A. Nazarov},
     title = {Finite-dimensional approximations to the {Poincar\'e--Steklov} operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {1--62},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a0/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Finite-dimensional approximations to the Poincar\'e--Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2019
SP  - 1
EP  - 62
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a0/
LA  - ru
ID  - MMO_2019_80_1_a0
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Finite-dimensional approximations to the Poincar\'e--Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2019
%P 1-62
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a0/
%G ru
%F MMO_2019_80_1_a0
S. A. Nazarov. Finite-dimensional approximations to the Poincar\'e--Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 1-62. http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a0/

[1] Nečas J., Les méthodes directes en théorie des équations elliptiques, Masson-Academia, Paris–Prague, 1967 | MR

[2] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Problemy matem. analiza, 16, Izd–vo SPbGU, SPb., 1997, 167–192 | Zbl

[3] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5(329) (1999), 77–142 | DOI | Zbl

[4] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17 (1964), 35–92 | DOI | MR | Zbl

[5] Exner P., Kovarîk H., Quantum waveguides, Theoretical and Mathematical Physics, Springer, Cham, 2015 | DOI | MR | Zbl

[6] Mittra P., Li S., Analiticheskie metody teorii volnovodov, Mir, M., 1974

[7] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977

[8] Parton V. Z., Kudryavtsev B. A., Elektromagnitouprugost pezoelektricheskikh i elektroprovodnykh tel, Nauka, M., 1988

[9] Nazarov S. A., “Ravnomernye otsenki ostatkov v asimptoticheskikh razlozheniyakh reshenii zadachi o sobstvennykh kolebaniyakh pezoelektricheskoi plastiny”, Problemy matem. analiza, 25, Nauchn. kniga, Novosibirsk, 2003, 99–188 | Zbl

[10] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970

[11] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR

[12] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Birkhäuser Verlag, Basel, 2000 | MR | MR

[13] Nazarov S. A., “Ob asimptotike po parametru resheniya ellipticheskoi kraevoi zadachi s periodicheskimi koeffitsientami v tsilindre”, Differents. uravneniya i ikh primeneniya, 30, Izd–vo AN LitSSR, Vilnyus, 1981, 27–46

[14] Nazarov S. A., “The Navier–Stokes problem in thin or long tubes with periodically varying cross-section”, ZAMM, 80:9 (2000), 591–612 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] Nazarov S. A., “Konechnomernye approksimatsii operatora Steklova–Puankare dlya uravneniya Gelmgoltsa v periodicheskikh volnovodakh”, Problemy matem. analiza, 93, Novosibirsk, 2018, 53–88

[16] Baronian V., Bonnet-Ben Dhia A.-S., Lunéville E., “Transparent boundary conditions for the harmonic diffraction problem in an elastic waveguide”, J. Comput. Appl. Math., 234:6 (2010), 1945–1952 | DOI | MR | Zbl

[17] Baronian V., Bonnet-Ben Dhia A.-S., Fliss S., Tonnoir A., “Iterative methods for scattering problems in isotropic or anisotropic elastic waveguides”, Wave Motion, 64 (2016), 13–33 | DOI | MR

[18] Lebedev V. I., Agoshkov V. I., Operatory Puankare–Steklova i ikh prilozheniya v analize, Izdanie Otd. vychisl. matem. AN SSSR, M., 1983

[19] Nazarov S. A., “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funkts. analiz i ego pril., 40:2 (2006), 20–32 | DOI | Zbl

[20] Wilcox C. H., Scattering theory of diffraction gratings, Applied Math. Sci., 46, Springer-Verlag, New York, 1984 | MR

[21] Lenoir M., Tounsi A., “The localized finite element method and its application to the two-dimensional sea-keeping problem”, SIAM J. Numer. Anal., 25:4 (1988), 729–752 | DOI | MR | Zbl

[22] Gelfand I. M., “Razlozhenie po sobstvennym funktsiyam uravnenii s periodicheskimi koeffitsientami”, DAN SSSR, 73:6 (1950), 1117–1120 | Zbl

[23] Nazarov S. A., “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izv. AN SSSR. Seriya matem., 45:1 (1981), 101–112 | Zbl

[24] Kuchment P. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, UMN, 37:4(226) (1982), 3–52

[25] Skriganov M. M., “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Tr. MIAN, 171, 1985, 3–122

[26] Kuchment P., Floquet theory for partial differential equations, Operator Theory: Advances and Applications, 60, Birchäuser, Basel, 1993 | MR | Zbl

[27] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[28] Sobolev A. V., Walthoe J., “Absolute continuity in periodic waveguides”, Proc. London Math. Soc. (3), 85:3 (2002), 717–741 | DOI | MR | Zbl

[29] Suslina T. A., Shterenberg R. G., “Absolyutnaya nepreryvnost spektra magnitnogo operatora Shredingera s metrikoi v dvumernom periodicheskom volnovode”, Algebra i analiz, 14:2 (2002), 159–206

[30] Kachkovskii I., Filonov N., “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Shredingera v mnogomernom tsilindre”, Algebra i analiz, 21:1 (2009), 133–152 | Zbl

[31] Miller K., “Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients”, Arch. Rat. Mech. Anal., 54:2 (1974), 105–117 | DOI | MR | Zbl

[32] Filonov N. D., “Ellipticheskoe uravnenie vtorogo poryadka v divergentnoi forme, imeyuschee reshenie s kompaktnym nositelem”, Problemy matem. analiza, 22, Nauchn. kniga, Novosibirsk, 2001, 246–257 | Zbl

[33] Demchenko M. N., “O needinstvennosti prodolzheniya resheniya sistemy Maksvella”, Zap. nauchn. sem. POMI, 393, 2011, 80–100

[34] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3(117) (1964), 53–161 | Zbl

[35] Nazarov S. A., Plamenevskii B. A., “Ob usloviyakh izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, DAN SSSR, 311:3 (1990), 532–536 | Zbl

[36] Nazarov S. A., Plamenevskii B. A., “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Problemy matem. fiziki, 13, izd–vo LGU, L., 1991, 192–244

[37] Nazarov S. A., “Usloviya izlucheniya Umova–Mandelshtama v uprugikh periodicheskikh volnovodakh”, Matem. sb., 205:7 (2014), 43–72 | DOI | Zbl

[38] Nazarov S. A., Taskinen J., “Radiation conditions for the linear water-wave problem in periodic channels”, Math. Nachr., 290:11–12 (2017), 1753–1778 | DOI | MR | Zbl

[39] Umov N. A., Uravneniya dvizheniya energii v telakh, Tipogr. Ulrikha i Shultse, Odessa, 1874

[40] Poynting J. H., “On the transfer of energy in the electromagnetic field”, Phil. Trans. of the Royal Society of London, 175 (1884), 343–361 | DOI

[41] Mandelshtam L. I., Lektsii po optike, teorii otnositelnosti i kvantovoi mekhanike, Sb. trudov, v. 2, Izd–vo AN SSSR, M., 1947

[42] Vorovich I. I., Babeshko V. A., Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979

[43] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR | Zbl

[44] Nazarov S. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach s periodicheskimi koeffitsientami”, Vestnik LGU. Seriya 1, 1985, no. 3(15), 16–22

[45] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[46] Nazarov S. A., “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, TMF, 167:2 (2011), 239–263 | DOI | Zbl

[47] Roitberg I., Vassiliev D., Weidl T., “Edge resonance in an elastic semi-strip”, Quart. J. Mech. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl

[48] Holst A., Vassiliev D., “Edge resonance in an elastic semi-infinite cylinder”, Appl. Anal., 74:3–4 (2000), 479–495 | DOI | MR | Zbl

[49] Nazarov S. A., “Uprugie volny, zakhvachennye odnorodnym anizotropnym polutsilindrom”, Matem. sb., 204:11 (2013), 99–130 | DOI | Zbl

[50] Kamotskii I. V., Nazarov S. A., “Uprugie volny, lokalizovannye okolo periodicheskikh semeistv defektov”, Doklady RAN, 368:6 (1999), 771–773 | Zbl

[51] Nazarov S. A., “Lokalizovannye uprugie polya v periodicheskikh volnovodakh s defektami”, Prikladnaya mekhanika i tekhnicheskaya fizika, 52:2 (2011), 183–194 | Zbl

[52] Rellich F., “Über das asymptotische Verhalten der Lösungen von $\Delta u+\lambda u=0$ in unendlichen Gebieten”, Jber. Deutsch. Math. Verein, 53 (1943), 57–65 | MR | Zbl

[53] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, 1967, 279–292

[54] Kondratev V. A., “O gladkosti resheniya zadachi Dirikhle dlya ellipticheskikh uravnenii vtorogo poryadka v kusochno-gladkoi oblasti”, Differents. uravneniya, 6:10 (1970), 1831–1843 | Zbl

[55] Kondratev V. A., “Osobennosti resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differents. uravneniya, 13:11 (1977), 2026–2032 | Zbl

[56] Nazarov S. A., “Otsenki vblizi rebra resheniya zadachi Neimana dlya ellipticheskoi sistemy”, Vestnik LGU. Seriya 1, 1988, no. 1(1), 37–42

[57] Nazarov S. A., Plamenevskii B. A., “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno-gladkoi granitsei”, Tr. Leningradskogo matem. obsch-va, 1, 1990, 174–211

[58] Nazarov S. A., Taskinen J., “Spectral gaps for periodic piezoelectric waveguides”, ZAMP, 66 (2015), 3017–3047 | MR | Zbl

[59] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5(77) (1957), 3–122 | Zbl

[60] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd–vo Leningr. un–ta, L., 1980

[61] Nazarov S. A., “Skhema interpretatsii priblizhennykh vychislenii sobstvennykh znachenii, vkraplennykh v nepreryvnyi spektr”, Zh. vychisl. matem. i matem. fiz., 53:6 (2013), 878–897 | DOI | Zbl

[62] Nazarov S. A., Ruotsalainen K. M., “A rigorous interpretation of approximate computations of embedded eigenfrequencies of water waves”, Z. Anal. Anwend., 35:2 (2016), 211–242 | DOI | MR | Zbl