Finite-dimensional approximations to the Poincar\'e--Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 1-62

Voir la notice de l'article provenant de la source Math-Net.Ru

We study formally self-adjoint boundary value problems for elliptic systems of differential equations in domains with periodic (in particular, cylindrical) exits to infinity. Statements of problems in a truncated (finite) domain which provide approximate solutions of the original problem are presented. The integro-differential conditions on the artificially formed end face are interpreted as a finite-dimensional approximation to the Steklov–Poincaré operator, which is widely used when dealing with the Helmholtz equation in cylindrical waveguides. Asymptotically sharp approximation error estimates are obtained for the solutions of the problem with the compactly supported right-hand side in an infinite domain as well as for the eigenvalues in the discrete spectrum (if any). The construction of a finite-dimensional integro-differential operator is based on natural orthogonality and normalization conditions for oscillating and exponential Floquet waves in a periodic quasicylindrical end.
@article{MMO_2019_80_1_a0,
     author = {S. A. Nazarov},
     title = {Finite-dimensional approximations to the {Poincar\'e--Steklov} operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {1--62},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a0/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Finite-dimensional approximations to the Poincar\'e--Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2019
SP  - 1
EP  - 62
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a0/
LA  - ru
ID  - MMO_2019_80_1_a0
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Finite-dimensional approximations to the Poincar\'e--Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2019
%P 1-62
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a0/
%G ru
%F MMO_2019_80_1_a0
S. A. Nazarov. Finite-dimensional approximations to the Poincar\'e--Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 80 (2019) no. 1, pp. 1-62. http://geodesic.mathdoc.fr/item/MMO_2019_80_1_a0/