Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2018_79_1_a1, author = {S. A. Kashchenko}, title = {The simplest critical cases in the dynamics of nonlinear systems with small diffusion}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {97--115}, publisher = {mathdoc}, volume = {79}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a1/} }
TY - JOUR AU - S. A. Kashchenko TI - The simplest critical cases in the dynamics of nonlinear systems with small diffusion JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2018 SP - 97 EP - 115 VL - 79 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a1/ LA - ru ID - MMO_2018_79_1_a1 ER -
S. A. Kashchenko. The simplest critical cases in the dynamics of nonlinear systems with small diffusion. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 1, pp. 97-115. http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a1/
[1] Akhromeeva T. S., Kurdyumov S. P., Malinetskii G. G. i dr., Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992, 544 pp.
[2] Gourley S. A., Sou J. W.-H., Wu J. H., “Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics”, J. Math. Sci., 124:4 (2004), 5119–5153 | DOI | MR
[3] Haken H., Synergetics: an introduction, Springer Series in Synergetics, 1, 3rd ed., Springer Verlag, Berlin, 1983 | DOI | MR | Zbl
[4] Huang W., “Global Dynamics for a Reaction-Diffusion Equation with Time Delay”, J. Differential Equations, 143:2 (1998), 293–326 | DOI | MR | Zbl
[5] Kuang Y., Delay Differential Equations: With Applications in Population Dynamics, Mathematics in science and engineering, 191, Academic Press, Boston, 1993, 410 pp. | MR | Zbl
[6] Kudryashov N. A., Metody nelineinoi matematicheskoi fiziki, MIFI, M., 2008, 352 pp.
[7] Kuramoto Y., Tsuzuki T., “On the Formation of Dissipative Structures in Reaction-Diffusion Systems”, Progr. Theor. Phys., 54:3 (1975), 687–699 | DOI | MR
[8] Kuramoto Y., Chemical oscillations, waves, and turbulence, Springer Series in Synergetics, 19, Springer Verlag, Berlin, 1984, 164 pp. | DOI | MR | Zbl
[9] Butuzov V. F., Levashova N. T., “O sisteme tipa reaktsiya-diffuziya-perenos v sluchae maloi diffuzii i bystrykh reaktsii”, Zh. vychisl. matem. i matem. fiz., 43:7 (2003), 1005–1017 | Zbl
[10] Butuzov V. F., Vasileva A. B., Nefedov N. N., “Asimptoticheskaya teoriya kontrastnykh struktur (obzor)”, Avtomat. i telemekh., 1997, no. 7, 4–32
[11] Meinhardt H., The algorithmic beauty of sea shells, The Virtual Laboratory, Springer Verlag, Berlin, 1995, 215 pp pp. | DOI | MR
[12] Rovinsky A., Zhabotinsky A., “Mechanism and mathematical model of the oscillating bromate-ferroin-bromomalonic acid reaction”, J. Phys. Chem., 88:25 (1984), 6081–6084 | DOI | MR
[13] Vasilev V. A., Romanovskii Yu. M., Yakhno V. G., Avtovolnovye protsessy, Sovremennye problemy fiziki, Nauka, M., 1987, 240 pp.
[14] Ivanitskii G. R., Krinskii V. I., Selkov E. E., Matematicheskaya biofizika kletki, Teoreticheskaya i prikladnaya biofizika, Nauka, M., 1978, 310 pp.
[15] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskaya biofizika, Fizika zhiznennykh protsessov, Nauka, M., 1984, 304 pp.
[16] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskoe modelirovanie v biofizike, Fizika zhiznennykh protsessov, Nauka, M., 1975, 343 pp.
[17] R. Fild, M. Burger (red.), Kolebaniya i beguschie volny v khimicheskikh sistemakh, Mir, M., 1984, 720 pp.
[18] Kaschenko S. A., “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, DAN SSSR, 299:5 (1988), 1049–1052 | Zbl
[19] Kaschenko S. A., “Lokalnaya dinamika dvukhkomponentnykh kontrastnykh struktur v okrestnosti tochki bifurkatsii”, DAN SSSR, 312:2 (1990), 345–350 | Zbl
[20] Bokolishvily I. B., Kaschenko S. A., Malinetskii G. G. et al., “Complex ordering and stochastic oscillations in a class of reaction-diffusion systems with small diffusion”, J. Nonlinear Science, 4:1 (1994), 545–562 | DOI | MR | Zbl
[21] Kaschenko S. A., “Normalization in the systems with small diffusion”, Internat. J. Bifur. Chaos in Appl. Sci. Engrg., 6:6 (1996), 1093–1109 | DOI | MR | Zbl
[22] Kaschenko S. A., “Bifurcational Features in Systems of Nonlinear Parabolic Equations with Weak Diffusion”, Internat. J. Bifur. Chaos in Appl. Sci. Engrg., 15:11 (2005), 3595–3606 | DOI | MR | Zbl
[23] Kaschenko I. S., Kaschenko S. A., “Kvazinormalnye formy dlya parabolicheskikh sistem s silnoi nelineinostyu i maloi diffuziei”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1482–1491 | Zbl
[24] Kaschenko I. S., Kaschenko S. A., “Korporativnaya dinamika silno svyazannykh raspredelennykh sistem”, Doklady RAN, 442:5 (2012), 600–604 | Zbl
[25] Kaschenko I. S., Kaschenko S. A., “Kvazinormalnye formy dvukhkomponentnykh singulyarno vozmuschennykh sistem”, Doklady RAN, 447:4 (2012), 376–381 | Zbl
[26] Kaschenko I. S., Kaschenko S. A., “Local Dynamics of the Two-Component Singular Perturbed Systems of Parabolic Type”, Internat. J. Bifur. Chaos in Appl. Sci. Engrg., 25:11 (2015), 1550142 | DOI | MR | Zbl
[27] Kaschenko S. A., “Normalnaya forma dlya uravneniya Kortevega–de Friza–Byurgersa”, Doklady RAN, 468:4 (2016), 383–386 | DOI | Zbl
[28] Kaschenko I. S., Kaschenko S. A., “Lokalnaya dinamika dvukhkomponentnykh singulyarno vozmuschennykh parabolicheskikh sistem”, Tr. MMO, 77, no. 1, 2016, 67–82
[29] Kaschenko S. A., “Prostranstvennye osobennosti vysokomodovykh bifurkatsii dvukhkomponentnykh sistem s maloi diffuziei”, Differents. uravneniya, 25:2 (1989), 262–270 | Zbl