The simplest critical cases in the dynamics of nonlinear systems with small diffusion
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 1, pp. 97-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems of nonlinear equations of parabolic type provide models for many processes and phenomena. A special role is played by systems with relatively small diffusion coefficients. In investigating the dynamical properties of solutions, the diffusion coefficients being small leads to the appearance of infinite-dimensional critical cases in problems on the stability of solutions. In this paper we study the simplest and most important of these critical cases. Special nonlinear evolution equations are constructed which play the role of normal forms; their nonlocal dynamics determines the behaviour of solutions of the original system in a small neighbourhood of an equilibrium state. The importance of the renormalization procedure is demonstrated.
@article{MMO_2018_79_1_a1,
     author = {S. A. Kashchenko},
     title = {The simplest critical cases in the dynamics of nonlinear systems with small diffusion},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {97--115},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a1/}
}
TY  - JOUR
AU  - S. A. Kashchenko
TI  - The simplest critical cases in the dynamics of nonlinear systems with small diffusion
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2018
SP  - 97
EP  - 115
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a1/
LA  - ru
ID  - MMO_2018_79_1_a1
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%T The simplest critical cases in the dynamics of nonlinear systems with small diffusion
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2018
%P 97-115
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a1/
%G ru
%F MMO_2018_79_1_a1
S. A. Kashchenko. The simplest critical cases in the dynamics of nonlinear systems with small diffusion. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 1, pp. 97-115. http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a1/

[1] Akhromeeva T. S., Kurdyumov S. P., Malinetskii G. G. i dr., Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992, 544 pp.

[2] Gourley S. A., Sou J. W.-H., Wu J. H., “Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics”, J. Math. Sci., 124:4 (2004), 5119–5153 | DOI | MR

[3] Haken H., Synergetics: an introduction, Springer Series in Synergetics, 1, 3rd ed., Springer Verlag, Berlin, 1983 | DOI | MR | Zbl

[4] Huang W., “Global Dynamics for a Reaction-Diffusion Equation with Time Delay”, J. Differential Equations, 143:2 (1998), 293–326 | DOI | MR | Zbl

[5] Kuang Y., Delay Differential Equations: With Applications in Population Dynamics, Mathematics in science and engineering, 191, Academic Press, Boston, 1993, 410 pp. | MR | Zbl

[6] Kudryashov N. A., Metody nelineinoi matematicheskoi fiziki, MIFI, M., 2008, 352 pp.

[7] Kuramoto Y., Tsuzuki T., “On the Formation of Dissipative Structures in Reaction-Diffusion Systems”, Progr. Theor. Phys., 54:3 (1975), 687–699 | DOI | MR

[8] Kuramoto Y., Chemical oscillations, waves, and turbulence, Springer Series in Synergetics, 19, Springer Verlag, Berlin, 1984, 164 pp. | DOI | MR | Zbl

[9] Butuzov V. F., Levashova N. T., “O sisteme tipa reaktsiya-diffuziya-perenos v sluchae maloi diffuzii i bystrykh reaktsii”, Zh. vychisl. matem. i matem. fiz., 43:7 (2003), 1005–1017 | Zbl

[10] Butuzov V. F., Vasileva A. B., Nefedov N. N., “Asimptoticheskaya teoriya kontrastnykh struktur (obzor)”, Avtomat. i telemekh., 1997, no. 7, 4–32

[11] Meinhardt H., The algorithmic beauty of sea shells, The Virtual Laboratory, Springer Verlag, Berlin, 1995, 215 pp pp. | DOI | MR

[12] Rovinsky A., Zhabotinsky A., “Mechanism and mathematical model of the oscillating bromate-ferroin-bromomalonic acid reaction”, J. Phys. Chem., 88:25 (1984), 6081–6084 | DOI | MR

[13] Vasilev V. A., Romanovskii Yu. M., Yakhno V. G., Avtovolnovye protsessy, Sovremennye problemy fiziki, Nauka, M., 1987, 240 pp.

[14] Ivanitskii G. R., Krinskii V. I., Selkov E. E., Matematicheskaya biofizika kletki, Teoreticheskaya i prikladnaya biofizika, Nauka, M., 1978, 310 pp.

[15] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskaya biofizika, Fizika zhiznennykh protsessov, Nauka, M., 1984, 304 pp.

[16] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskoe modelirovanie v biofizike, Fizika zhiznennykh protsessov, Nauka, M., 1975, 343 pp.

[17] R. Fild, M. Burger (red.), Kolebaniya i beguschie volny v khimicheskikh sistemakh, Mir, M., 1984, 720 pp.

[18] Kaschenko S. A., “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, DAN SSSR, 299:5 (1988), 1049–1052 | Zbl

[19] Kaschenko S. A., “Lokalnaya dinamika dvukhkomponentnykh kontrastnykh struktur v okrestnosti tochki bifurkatsii”, DAN SSSR, 312:2 (1990), 345–350 | Zbl

[20] Bokolishvily I. B., Kaschenko S. A., Malinetskii G. G. et al., “Complex ordering and stochastic oscillations in a class of reaction-diffusion systems with small diffusion”, J. Nonlinear Science, 4:1 (1994), 545–562 | DOI | MR | Zbl

[21] Kaschenko S. A., “Normalization in the systems with small diffusion”, Internat. J. Bifur. Chaos in Appl. Sci. Engrg., 6:6 (1996), 1093–1109 | DOI | MR | Zbl

[22] Kaschenko S. A., “Bifurcational Features in Systems of Nonlinear Parabolic Equations with Weak Diffusion”, Internat. J. Bifur. Chaos in Appl. Sci. Engrg., 15:11 (2005), 3595–3606 | DOI | MR | Zbl

[23] Kaschenko I. S., Kaschenko S. A., “Kvazinormalnye formy dlya parabolicheskikh sistem s silnoi nelineinostyu i maloi diffuziei”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1482–1491 | Zbl

[24] Kaschenko I. S., Kaschenko S. A., “Korporativnaya dinamika silno svyazannykh raspredelennykh sistem”, Doklady RAN, 442:5 (2012), 600–604 | Zbl

[25] Kaschenko I. S., Kaschenko S. A., “Kvazinormalnye formy dvukhkomponentnykh singulyarno vozmuschennykh sistem”, Doklady RAN, 447:4 (2012), 376–381 | Zbl

[26] Kaschenko I. S., Kaschenko S. A., “Local Dynamics of the Two-Component Singular Perturbed Systems of Parabolic Type”, Internat. J. Bifur. Chaos in Appl. Sci. Engrg., 25:11 (2015), 1550142 | DOI | MR | Zbl

[27] Kaschenko S. A., “Normalnaya forma dlya uravneniya Kortevega–de Friza–Byurgersa”, Doklady RAN, 468:4 (2016), 383–386 | DOI | Zbl

[28] Kaschenko I. S., Kaschenko S. A., “Lokalnaya dinamika dvukhkomponentnykh singulyarno vozmuschennykh parabolicheskikh sistem”, Tr. MMO, 77, no. 1, 2016, 67–82

[29] Kaschenko S. A., “Prostranstvennye osobennosti vysokomodovykh bifurkatsii dvukhkomponentnykh sistem s maloi diffuziei”, Differents. uravneniya, 25:2 (1989), 262–270 | Zbl