Quantum~$q$-Langlands correspondence
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 1, pp. 1-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We conjecture, and prove for all simply-laced Lie algebras, an identification between the spaces of $q$-deformed conformal blocks for the deformed $\mathcal{ W}$-algebra $\mathcal{ W}_{q,t}(\mathfrak{g})$ and quantum affine algebra of $\widehat{^L\mathfrak{g}}$, where $^L\mathfrak{g}$ is the Langlands dual Lie algebra to $\mathfrak{g}$. We argue that this identification may be viewed as a manifestation of a $q$-deformation of the quantum Langlands correspondence. Our proof relies on expressing the $q$-deformed conformal blocks for both algebras in terms of the quantum $\mathrm{K}$-theory of the Nakajima quiver varieties. The physical origin of the isomorphism between them lies in the $\mathrm{6d}$ little string theory. The quantum Langlands correspondence emerges in the limit in which the $\mathrm{6d}$ little string theory becomes the $\mathrm{6d}$ conformal field theory with $(2,0)$ supersymmetry. References: 130 entries.
@article{MMO_2018_79_1_a0,
     author = {M. Aganagic and E. Frenkel and A. Okounkov},
     title = {Quantum~$q${-Langlands} correspondence},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {1--95},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a0/}
}
TY  - JOUR
AU  - M. Aganagic
AU  - E. Frenkel
AU  - A. Okounkov
TI  - Quantum~$q$-Langlands correspondence
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2018
SP  - 1
EP  - 95
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a0/
LA  - en
ID  - MMO_2018_79_1_a0
ER  - 
%0 Journal Article
%A M. Aganagic
%A E. Frenkel
%A A. Okounkov
%T Quantum~$q$-Langlands correspondence
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2018
%P 1-95
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a0/
%G en
%F MMO_2018_79_1_a0
M. Aganagic; E. Frenkel; A. Okounkov. Quantum~$q$-Langlands correspondence. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 1, pp. 1-95. http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a0/

[1] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño, C. Vafa, “Topological strings and integrable hierarchies”, Comm. Math. Phys., 261:2 (2006), 451–516, arXiv: hep-th/0312085 | DOI | MR | Zbl

[2] M. Aganagic, N. Haouzi, ADE little string theory on a Riemann surface (and triality), arXiv: 1506.04183 [hep-th]

[3] M. Aganagic, N. Haouzi, C. Kozcaz, S. Shakirov, Gauge/Liouville triality, arXiv: 1309.1687 [hep-th]

[4] M. Aganagic, N. Haouzi, S. Shakirov, $A_n$-triality, arXiv: 1403.3657 [hep-th]

[5] M. Aganagic, A. Okounkov, Elliptic stable envelope, arXiv: 1604.00423 [math.AG]

[6] M. Aganagic, A. Okounkov, “Quasimap counts and Bethe eigenfunctions”, Mosc. Math. J., 17:4 (2017), 565–600 | DOI | MR

[7] M. Aganagic, S. Shakirov, Gauge/vortex duality and AGT, arXiv: 1412.7132 [hep-th] | MR

[8] L. F. Alday, D. Gaiotto, Y. Tachikawa, “Liouville correlation functions from four-dimensional gauge theories”, Lett. Math. Phys., 91:2 (2010), 167–197, arXiv: 0906.3219 [hep-th] | DOI | MR | Zbl

[9] T. Arakawa, “Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture”, Duke Math. J., 130:3 (2005), 435–478 | DOI | MR | Zbl

[10] T. Arakawa, “Representation theory of W-algebras”, Invent. Math., 169:2 (2007), 219–320 | DOI | MR | Zbl

[11] P. C. Argyres, A. Kapustin, N. Seiberg, “On S-duality for non-simply-laced gauge groups”, J. High Energy Phys., 6 (2006), 043, arXiv: hep-th/0603048 | DOI | MR

[12] D. Arinkin, D. Gaitsgory, “Singular support of coherent sheaves and the geometric Langlands conjecture”, Selecta Math. (N. S.), 21:1 (2015), 1–199 | DOI | MR

[13] H. Awata, D. Kubo, S. Odake, J. Shiraishi, “Quantum $\mathcal{W}_N$ algebras and Macdonald polynomials”, Comm. Math. Phys., 179:2 (1996), 401–416 | DOI | MR | Zbl

[14] H. Awata, A. Tsuchiya, Y. Yamada, “Integral formulas for the WZNW correlation functions”, Nuclear Phys. B, 365:3 (1991), 680–696 | DOI | MR

[15] C. Beem, T. Dimofte, S. Pasquetti, “Holomorphic blocks in three dimensions”, J. High Energy Phys., 12 (2014), 177–296, arXiv: 1211.1986 [hep-th] | DOI | MR

[16] K. Behrend, B. Fantechi, “The intrinsic normal cone”, Invent. Math., 128:1 (1997), 45–88 | DOI | MR | Zbl

[17] A. Beilinson, V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, http://www.math.uchicago.edu/ãrinkin/langlands

[18] M. Bershadsky, K. Intriligator, S. Kachru, D. R. Morrison, V. Sadov, C. Vafa, “Geometric singularities and enhanced gauge symmetries”, Nuclear Phys. B, 481:1–2 (1996), 215–252 | DOI | MR

[19] M. Bershadsky, H. Ooguri, “Hidden $SL(n)$ symmetry in conformal field theory”, Comm. Math. Phys., 126:1 (1989), 49–83 | DOI | MR | Zbl

[20] R. Bezrukavnikov, M. Finkelberg, V. Schechtman, Factorizable sheaves and quantum groups, Lect. Notes in Math., 1691, Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl

[21] A. Braverman, M. Finkelberg, H. Nakajima, Instanton moduli spaces and $\mathcal{W}$-algebras, arXiv: 1406.2381 [math.QA] | MR

[22] A. Braverman, M. Finkelberg, H. Nakajima, Coulomb branches of $3d$ $\mathcal{N} = 4$ quiver gauge theories and slices in the affine Grassmannian, arXiv: (with appendices by A. Braverman, M. Finkelberg, J. Kamnitzer, R. Kodera, H. Nakajima, B. Webster, A. Weekes) 1604.03625 [math.RT] | MR

[23] A. Braverman, M. Finkelberg, H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathcal{N}=4$ gauge theories, II, arXiv: 1601.03586 [math.RT] | MR

[24] M. Bullimore, T. Dimofte, D. Gaiotto, J. Hilburn, Boundaries, mirror symmetry, and symplectic duality in $3d$ $\mathcal{N}=4$ Gauge theory, arXiv: 1603.08382 [hep-th] | MR

[25] S. Cecotti, C. Vafa, “Topological-anti-topological fusion”, Nuclear Phys. B, 367:2 (1991), 359–461 ; S. Cecotti, D. Gaiotto, C. Vafa, “$tt^*$ geometry in 3 and 4 dimensions”, J. High Energy Phys., 5 (2014) ; S. Cecotti, A. Neitzke, C. Vafa, “Twistorial topological strings and a $tt^*$ geometry for $\mathcal{N}=2$ theories in $4d$”, arXiv: 1412.4793 [hep-th] | DOI | MR | Zbl | MR | MR

[26] I. Ciocan-Fontanine, M. Kapranov, “Virtual fundamental classes via dg-manifolds”, Geom. Topol., 13:3 (2009), 1779–1804 | DOI | MR | Zbl

[27] I. Ciocan-Fontanine, B. Kim, D. Maulik, “Stable quasimaps to GIT quotients”, J. Geom. Phys., 75 (2014), 17–47 | DOI | MR | Zbl

[28] C. De Concini, C. Procesi, “On the geometry of toric arrangements”, Transform. Groups, 10:3–4 (2005), 387–422 | DOI | MR | Zbl

[29] N. Dorey, C. Fraser, T. J. Hollowood, M. A. C. Kneipp, “$S$-duality in $N=4$ supersymmetric gauge theories with arbitrary gauge group”, Phys. Lett. B, 383:4 (1996), 422–428 | DOI | MR

[30] M. R. Douglas, G. W. Moore, D-branes, quivers, and ALE instantons, arXiv: hep-th/9603167

[31] V. Drinfeld, “Hopf algebras and the quantum Yang-Baxter equation”, Dokl. Akad. Nauk SSSR, 32 (1985), 254–258 | MR

[32] P. I. Etingof, I. B. Frenkel, Jr. Kirillov A. A., Lectures on representation theory and Knizhnik–Zamolodchikov equations, Math. Surveys and Monographs, 58, AMS, Providence, RI, 1985 | MR

[33] P. I. Etingof, A. Varchenko, “Dynamical Weyl groups and applications”, Adv. Math., 167:1 (2002), 74–127 | DOI | MR | Zbl

[34] B. Fantechi, L. Göttsche, “Riemann-Roch theorems and elliptic genus for virtually smooth schemes”, Geom. Topol., 14:1 (2010), 83–115 | DOI | MR | Zbl

[35] B. Feigin, E. Frenkel, “Quantization of the Drinfel'd-Sokolov reduction”, Phys. Lett. B, 246:1–2 (1990), 75–81 | DOI | MR | Zbl

[36] B. Feigin, E. Frenkel, “Affine Kac-Moody algebras at the critical level and Gel'fand-Dik\u{i} algebras”, Int. J. Mod. Phys., A7, suppl. 1A (1992), 197–215 | DOI | MR | Zbl

[37] B. Feigin, E. Frenkel, “Integrals of motion and quantum groups”, Integrable systems and quantum groups (Montecatini Terme, 1993), Lect. Notes in Math., 1620, Springer, Berlin, 1996, 349–418, arXiv: hep-th/9310022 | DOI | MR | Zbl

[38] B. Feigin, E. Frenkel, “Quantum $\mathcal{W}$-algebras and elliptic algebras”, Comm. Math. Phys., 178:3 (1996), 653–678, arXiv: q-alg/9508009 | DOI | MR | Zbl

[39] B. Feigin, E. Frenkel, N. Reshetikhin, “Gaudin model, Bethe ansatz and critical level”, Comm. Math. Phys., 166:1 (1994), 27–62 | DOI | MR | Zbl

[40] G. Felder, Conformal field theory and integrable systems associated to elliptic curves, arXiv: hepth/9407154 | MR

[41] E. Frenkel, “$\mathcal{W}$-algebras and Langlands-Drinfel'd correspondence”, New symmetry principles in quantum field theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 295, Plenum Press, New York, 1992, 433–447 | MR | Zbl

[42] E. Frenkel, “Affine algebras, Langlands duality and Bethe ansatz”, XIth International Congress of Mathematical Physics (Paris, 1994), Int. Press, Cambridge, MA, 1995, 606–642, arXiv: q-alg/9506003 | MR | Zbl

[43] E. Frenkel, “Wakimoto modules, opers and the center at the critical level”, Adv. Math., 195:2 (2005), 297–404, arXiv: math/0210029 | DOI | MR | Zbl

[44] E. Frenkel, “Lectures on the Langlands program and conformal field theory”, Frontiers in number theory, physics, and geometry, II, Springer, Berlin, 2007, 387–533, arXiv: hep-th/0512172 | DOI | MR

[45] E. Frenkel, “Gauge theory and Langlands duality”, Astérisque, 332, 2010, 369–403 ; Séminaire Bourbaki, 2008/2009, no. 1010, arXiv: 0906.2747 | MR | Zbl | MR

[46] E. Frenkel, D. Ben-Zvi, Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88, 2nd ed., AMS, Providence, RI, 2004 | DOI | MR | Zbl

[47] E. Frenkel, S. Gukov, J. Teschner, “Surface operators and separation of variables”, J. High Energy Phys., 1 (2016), 179, arXiv: 1506.07508 [hep-th] | DOI | MR | Zbl

[48] E. Frenkel, V. Kac, M. Wakimoto, “Characters and fusion rules for $W$-algebras via quantized Drinfel'd-Sokolov reduction”, Comm. Math. Phys., 147:2 (1992), 295–328 | DOI | MR | Zbl

[49] E. Frenkel, N. Reshetikhin, “Towards deformed chiral algebras”, Proceedings of the Quantum Group Symposium at the XXIth International Colloquium on Group Theoretical Methods in Physics (Goslar, 1996), 1997, 27–42, arXiv: q-alg/9706023

[50] E. Frenkel, N. Reshetikhin, “Deformations of $\mathcal{W}$-algebras associated to simple Lie algebras”, Comm. Math. Phys., 197:1 (1998), 1–32, arXiv: q-alg/9708006 | DOI | MR | Zbl

[51] I. B. Frenkel, N. Yu. Reshetikhin, “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146:1 (1992), 1–60 | DOI | MR | Zbl

[52] P. Furlan, A. Ch. Ganchev, R. Paunov, V. B. Petkova, “Solutions of the Knizhnik-Zamolodchikov equation with rational isospins and the reduction to the minimal models”, Nuclear Phys. B, 394:3 (1993), 665–706 | DOI | MR | Zbl

[53] D. Gaiotto, P. Koroteev, “On three dimensional quiver gauge theories and integrability”, J. High Energy Phys., 5 (2013), 126, arXiv: 1304.0779 [hep-th] | DOI | MR | Zbl

[54] D. Gaiotto, E. Witten, “Knot invariants from four-dimensional gauge theory”, Adv. Theor. Math. Phys., 16:3 (2012), 935–1086, arXiv: 1106.4789 [hep-th] | DOI | MR | Zbl

[55] D. Gaitsgory, “Twisted Whittaker model and factorizable sheaves”, Selecta Math. (N. S.), 13:4 (2008), 617–659, arXiv: 0705.4571 | DOI | MR

[56] D. Gaitsgory, Quantum Langlands correspondence, arXiv: 1601.05279

[57] V. Ginzburg, “Lectures on Nakajima's quiver varieties”, Geometric methods in representation theory. I, Sémin. Congr., 24, Soc. Math. France, Paris, 2012, 145–219 | MR | Zbl

[58] A. Givental, “On the WDVV equation in quantum K-theory”, Michigan Math. J., 48 (2000), 295–304 (Dedicated to William Fulton on the occasion of his 60th birthday) | DOI | MR | Zbl

[59] T. Graber, R. Pandharipande, “Localization of virtual classes”, Invent. Math., 135:2 (1999), 487–518 | DOI | MR | Zbl

[60] S. Gukov, E. Witten, “Gauge theory, ramification, and the geometric Langlands program”, Current developments in mathematics, 2006 (2008), 35–180 | DOI | MR | Zbl

[61] D. Halpern-Leistner, “The derived category of a GIT quotient”, J. Amer. Math. Soc., 28:3 (2015), 871–912 | DOI | MR | Zbl

[62] Y.-Z. Huang, J. Lepowsky, “Tensor categories and the mathematics of rational and logarithmic conformal field theory”, J. Phys. A, 46:49 (2013), 494009, arXiv: 1304.7556 [hep-th] | DOI | MR | Zbl

[63] M. Jimbo, “A $q$-difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation”, Lett. Math. Phys., 10:1 (1985), 63–69 | DOI | MR | Zbl

[64] A. Kapustin, A Note on Quantum Geometric Langlands Duality, Gauge Theory, and Quantization of the Moduli Space of Flat Connections, arXiv: 0811.3264 [hep-th]

[65] A. Kapustin, E. Witten, “Electric-magnetic duality and the geometric Langlands program”, Comm. Number Theory Phys., 1:1 (2007), 1–236, arXiv: hep-th/0604151 | DOI | MR | Zbl

[66] D. Kazhdan, G. Lusztig, “Tensor structures arising from affine Lie algebras”, J. Amer. Math. Soc., 6:4 (1993), 905–947 | DOI | MR | Zbl

[67] T. Kimura, V. Pestun, Quiver W-algebras, arXiv: 1512.08533 [hep-th] | MR

[68] V. G. Knizhnik, A. B. Zamolodchikov, “Current algebra and Wess-Zumino model in two-dimensions”, Nuclear Phys. B, 247:1 (1984), 83–103 | DOI | MR | Zbl

[69] K. Kuroki, A. Nakayashiki, “Free field approach to solutions of the quantum Knizhnik–Zamolodchikov equations”, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), 049 | MR | Zbl

[70] Y.-P. Lee, “Quantum K-theory. I. Foundations”, Duke Math. J., 121:3 (2004), 389–424 | DOI | MR | Zbl

[71] G. Laumon, Transformation de Fourier généralisée, arXiv: alg-geom/9603004

[72] J. Li, “Stable morphisms to singular schemes and relative stable morphisms”, J. Differential Geom., 57:3 (2001), 509–578 | DOI | MR | Zbl

[73] J. Li, “A degeneration formula of GW-invariants”, J. Differential Geom., 60:2 (2002), 199–293 | DOI | MR | Zbl

[74] J. Li, B. Wu, “Good degeneration of Quot-schemes and coherent systems”, Comm. Anal. Geom., 23:4 (2015), 841–921 | DOI | MR | Zbl

[75] A. S. Losev, A. Marshakov, N. A. Nekrasov, “Small instantons, little strings and free fermions”, From Fields to Strings, v. 1, World Sci. Publ., Singapore, 2005, 581–621, arXiv: hepth/0302191 | MR | Zbl

[76] A. Losev, G. W. Moore, S. L. Shatashvili, “M m's”, Nuclear Phys. B, 522:1–2 (1998), 105–124, arXiv: hep-th/9707250 | DOI | MR | Zbl

[77] A. Matsuo, “Jackson integrals of Jordan-Pochhammer type and quantum Knizhnik-Zamolodchikov equations”, Comm. Math. Phys., 151:2 (1993), 263–273 | DOI | MR | Zbl

[78] A. Matsuo, “Quantum algebra structure of certain Jackson integrals”, Comm. Math. Phys., 157:3 (1993), 479–498 | DOI | MR | Zbl

[79] D. Maulik, A. Okounkov, Quantum groups and quantum cohomology, Astérisque (to appear) , arXiv: 1211.1287

[80] K. McGerty, T. Nevins, Kirwan surjectivity for quiver varieties, arXiv: 1610.08121 | MR

[81] H. Nakajima, “Quiver varieties and finite-dimensional representations of quantum affine algebras”, J. Amer. Math. Soc., 14:1 (2001), 145–238 | DOI | MR | Zbl

[82] H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathcal{N}=4$ gauge theories, I, arXiv: 1503.03676 [math-ph] | MR

[83] N. Nekrasov, “On the BPS/CFT correspondence”, Seminar at the University of Amsterdam (Feb 2004)

[84] N. A. Nekrasov, “Instanton partition functions and M-theory”, Jpn. J. Math., 4:1 (2009), 63–93 | DOI | MR | Zbl

[85] N. Nekrasov, “BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and $qq$-characters”, J. High Energy Phys., 3 (2016), 181, arXiv: 1512.05388 [hep-th] | DOI | MR | Zbl

[86] N. Nekrasov, “BPS/CFT correspondence II: instantons at crossroads, moduli and compactness theorem”, Adv. Theor. Math. Phys., 21:2 (2017), 503–583, arXiv: 1608.07272 [hep-th] | DOI | MR | Zbl

[87] N. Nekrasov, “BPS/CFT correspondence III: gauge origami partition function and $qq$-characters”, Comm. Math. Phys., 358:3 (2018), 863–894, arXiv: 1701.00189 [hep-th] | DOI | MR | Zbl

[88] N. Nekrasov, A. Okounkov, “Seiberg-Witten theory and random partitions”, The unity of mathematics, Progr. Math., 244, Birkhauser Boston, Boston, MA, 2006, 525–596, arXiv: hep-th/0306238 | DOI | MR | Zbl

[89] N. Nekrasov, A. Okounkov, “Membranes and sheaves”, Algebr. Geom., 3:3 (2016), 320–369, arXiv: 1404.2323 [math.AG] | DOI | MR | Zbl

[90] N. Nekrasov, V. Pestun, Seiberg-Witten geometry of four dimensional $N = 2$ quiver gauge theories, arXiv: 1211.2240 [hep-th]

[91] N. Nekrasov, A. Rosly, S. Shatashvili, “Darboux coordinates, Yang-Yang functional, and gauge theory”, Nucl. Phys. B. Proc. Suppl., 216 (2011), 69–93, arXiv: 1103.3919 [hep-th] | DOI | MR

[92] N. Nekrasov, E. Witten, “The omega deformation, branes, integrability, and Liouville theory”, J. High Energy Phys., 1009 (2010), 092, arXiv: 1002.0888 [hep-th] | DOI | MR

[93] A. Okounkov, “Lectures on K-theoretic computations in enumerative geometry”, Geometry of moduli spaces and representation theory, IAS/Park City Math. Ser., 24, AMS, Providence, RI, 2017, 251–380 | DOI | MR | Zbl

[94] A. Okounkov, A. Smirnov, Quantum difference equations for Nakajima varieties, arXiv: 1602.09007

[95] H. Ooguri, C. Vafa, “Knot invariants and topological strings”, Nuclear Phys. B, 577:3 (2000), 419–438, arXiv: hep-th/9912123 | DOI | MR | Zbl

[96] J. L. Petersen, J. Rasmussen, M. Yu, “Conformal blocks for admissible representations in $\mathrm{SL(2)}$ current algebra”, Nuclear Phys. B, 457:1–2 (1995), 309–342 | DOI | MR | Zbl

[97] J. Polchinski, Tasi lectures on D-branes, arXiv: hep-th/9611050 | MR

[98] A. Polishchuk, M. Rothstein, “Fourier transform for D-algebras”, Duke Math. J., 109:1 (2001), 123–146 | DOI | MR | Zbl

[99] S. Raskin, $\mathcal{W}$-algebras and Whittaker categories, arXiv: 1611.04937

[100] S. Raskin, $\mathcal{W}$-algebras and Whittaker categories, http://math.mit.edu/s̃raskin/chiralcats.pdf

[101] N. Reshetikhin, Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links. I; II, LOMI Preprints, E-4-87, USSR Academy of Sciences | MR

[102] N. Reshetikhin, “Jackson-type integrals, Bethe vectors, and solutions to a difference analog of the Knizhnik-Zamolodchikov system”, Lett. Math. Phys., 26:3 (1992), 153–165 | DOI | MR | Zbl

[103] M. Rothstein, “Connections on the total Picard sheaf and the KP hierarchy”, Acta Appl. Math., 42:3 (1996), 297–308 | DOI | MR | Zbl

[104] V. Schechtman, “Dualité de Langlands quantique”, Ann. Fac. Sci. Toulouse Math. (6), 23:1 (2014), 129–158 | DOI | MR | Zbl

[105] V. V. Schechtman, A. N. Varchenko, “Arrangements of hyperplanes and Lie algebra homology”, Invent. Math., 106:1 (1991), 139–194 | DOI | MR | Zbl

[106] V. V. Schechtman, A. N. Varchenko, “Quantum groups and homology of local systems”, Algebraic geometry and analytic geometry, ICM-90 Satell. Conf. Proc. (Tokyo, 1990), Springer, Tokyo, 1991, 182–197 | MR

[107] N. Seiberg, “New theories in six-dimensions and matrix description of $M$-theory on $T^5$ and $T^5/Z_2$”, Phys. Lett. B, 408:1–4 (1997), 98–104, arXiv: hep-th/9705221 | DOI | MR

[108] J. Shiraishi, H. Kubo, H. Awata, S. Odake, “A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions”, Lett. Math. Phys., 38:1 (1996), 33–51 | DOI | MR | Zbl

[109] A. Smirnov, Rationality of capped descendent vertex in K-theory, arXiv: 1612.01048

[110] A. Stoyanovsky, On quantization of the geometric Langlands correspondence I, arXiv: math/9911108

[111] A. Stoyanovsky, A Relation between the Knizhnik-Zamolodchikov and Belavin-Polyakov-Zamolodchikov systems of partial differential equations, arXiv: math-ph/0012013v3 | MR

[112] A. Stoyanovsky, Quantum Langlands duality and conformal field theory, arXiv: math/0610974

[113] V. Tarasov, A. Varchenko, “Geometry of q-hypergeometric functions as a bridge between Yangians and quantum affine algebras”, Invent. Math., 128:3 (1997), 501–588 | DOI | MR | Zbl

[114] V. Tarasov, A. Varchenko, Geometry of q-hypergeometric functions, quantum affine algebras and elliptic quantum groups, Astérisque, 246, 1997 | MR | Zbl

[115] V. Tarasov, A. Varchenko, “Combinatorial formulae for nested Bethe vectors”, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), 048 | MR | Zbl

[116] St. Petersburg Math. J., 6:2 (1995), 275–313 | MR | MR

[117] C. Teleman, “The quantization conjecture revisited”, Ann. of Math. (2), 152:1 (2000), 1–43 | DOI | MR | Zbl

[118] J. Teschner, “Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I”, Adv. Theor. Math. Phys., 15:2 (2011), 471–564 | DOI | MR | Zbl

[119] C. Vafa, “Geometric origin of Montonen-Olive duality”, Adv. Theor. Math. Phys., 1:1 (1997), 158–166, arXiv: hep-th/9707131 | DOI | MR | Zbl

[120] A. Varchenko, “Quantized Knizhnik-Zamolodchikov equations, quantum Yang-Baxter equation, and difference equations for q-hypergeometric functions”, Comm. Math. Phys., 162:3 (1994), 499–528 | DOI | MR | Zbl

[121] A. Varchenko, Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, World Sci. Publ., River Edge, NJ, 1995 | MR | Zbl

[122] E. Witten, “Quantum field theory, Grassmannians, and algebraic curves”, Comm. Math. Phys., 113:4 (1988), 529–600 | DOI | MR

[123] E. Witten, “Mirror manifolds and topological field theory”, Essays on mirror symmetry I, 1992, 121–160, arXiv: hep-th/9112056 | MR

[124] E. Witten, “Phases of $N = 2$ theories in two dimensions”, Nuclear Phys. B, 403:1–2 (1993), 159–222, arXiv: hep-th/9301042 | DOI | MR | Zbl

[125] E. Witten, “Geometric Langlands from six dimensions”, A celebration of the mathematical legacy of Raoul Bott, CRM Proc. Lecture Notes, 50, AMS, Providence, RI, 2010, 281–310, arXiv: 0905.2720 [hep-th] | DOI | MR | Zbl

[126] E. Witten, “Geometric Langlands duality and the equations of Nahm and Bogomolny”, Proc. Roy. Soc. Edinburgh Sect. A, 140:4 (2010), 857–895, arXiv: 0905.4795 [hep-th] | DOI | MR | Zbl

[127] E. Witten, “Fivebranes and knots”, Quantum Topol., 3:1 (2012), 1–137, arXiv: 1101.3216 [hep-th] | DOI | MR | Zbl

[128] E. Witten, “A new look at the path integral of quantum mechanics”, Perspectives in mathematics and physics, Surveys in differential geometry, 15, Int. Press, Somerville, MA, 2011, 345–419, arXiv: 1009.6032 [hep-th] | DOI | MR | Zbl

[129] E. Witten, “More on gauge theory and geometric Langlands”, Adv. Math., 327 (2018), 624–707, arXiv: 1506.04293 [hep-th] | DOI | MR | Zbl

[130] C. Woodward, Moment maps and geometric invariant theory, arXiv: 0912.1132