Quantum~$q$-Langlands correspondence
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 1, pp. 1-95
Voir la notice de l'article provenant de la source Math-Net.Ru
We conjecture, and prove for all simply-laced Lie algebras, an identification
between the spaces of $q$-deformed conformal blocks for the deformed $\mathcal{
W}$-algebra $\mathcal{ W}_{q,t}(\mathfrak{g})$ and quantum affine algebra of
$\widehat{^L\mathfrak{g}}$, where $^L\mathfrak{g}$ is the Langlands dual Lie algebra to $\mathfrak{g}$.
We argue that this identification may be viewed as a manifestation of
a $q$-deformation of the quantum Langlands correspondence. Our proof relies on
expressing the $q$-deformed conformal blocks for both algebras in terms of the
quantum $\mathrm{K}$-theory of the Nakajima quiver varieties. The physical origin of the
isomorphism between them lies in the $\mathrm{6d}$ little string theory. The quantum
Langlands correspondence emerges in the limit in which the $\mathrm{6d}$ little string
theory becomes the $\mathrm{6d}$ conformal field theory with $(2,0)$ supersymmetry.
References: 130 entries.
@article{MMO_2018_79_1_a0,
author = {M. Aganagic and E. Frenkel and A. Okounkov},
title = {Quantum~$q${-Langlands} correspondence},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {1--95},
publisher = {mathdoc},
volume = {79},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a0/}
}
M. Aganagic; E. Frenkel; A. Okounkov. Quantum~$q$-Langlands correspondence. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 1, pp. 1-95. http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a0/