Quantum~$q$-Langlands correspondence
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 1, pp. 1-95

Voir la notice de l'article provenant de la source Math-Net.Ru

We conjecture, and prove for all simply-laced Lie algebras, an identification between the spaces of $q$-deformed conformal blocks for the deformed $\mathcal{ W}$-algebra $\mathcal{ W}_{q,t}(\mathfrak{g})$ and quantum affine algebra of $\widehat{^L\mathfrak{g}}$, where $^L\mathfrak{g}$ is the Langlands dual Lie algebra to $\mathfrak{g}$. We argue that this identification may be viewed as a manifestation of a $q$-deformation of the quantum Langlands correspondence. Our proof relies on expressing the $q$-deformed conformal blocks for both algebras in terms of the quantum $\mathrm{K}$-theory of the Nakajima quiver varieties. The physical origin of the isomorphism between them lies in the $\mathrm{6d}$ little string theory. The quantum Langlands correspondence emerges in the limit in which the $\mathrm{6d}$ little string theory becomes the $\mathrm{6d}$ conformal field theory with $(2,0)$ supersymmetry. References: 130 entries.
@article{MMO_2018_79_1_a0,
     author = {M. Aganagic and E. Frenkel and A. Okounkov},
     title = {Quantum~$q${-Langlands} correspondence},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {1--95},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a0/}
}
TY  - JOUR
AU  - M. Aganagic
AU  - E. Frenkel
AU  - A. Okounkov
TI  - Quantum~$q$-Langlands correspondence
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2018
SP  - 1
EP  - 95
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a0/
LA  - en
ID  - MMO_2018_79_1_a0
ER  - 
%0 Journal Article
%A M. Aganagic
%A E. Frenkel
%A A. Okounkov
%T Quantum~$q$-Langlands correspondence
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2018
%P 1-95
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a0/
%G en
%F MMO_2018_79_1_a0
M. Aganagic; E. Frenkel; A. Okounkov. Quantum~$q$-Langlands correspondence. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 79 (2018) no. 1, pp. 1-95. http://geodesic.mathdoc.fr/item/MMO_2018_79_1_a0/