Generic elements of a~Zariski-dense subgroup form an open subset
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 357-375.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a semi-simple algebraic group over a finitely generated field $K$ of characteristic zero, and let $\Gamma \subset G(K)$ be a finitely generated Zariski-dense subgroup. In this note we prove that the set of $K$-generic elements of $\Gamma$ (whose existence was established earlier in [PR301]) is open in the profinite topology of $\Gamma$. We then extend this result to the fields of positive characteristic, and also prove the existence of generic elements in this case.
@article{MMO_2017_78_2_a7,
     author = {G. Prasad and A. S. Rapinchuk},
     title = {Generic elements of {a~Zariski-dense} subgroup form an open subset},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {357--375},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a7/}
}
TY  - JOUR
AU  - G. Prasad
AU  - A. S. Rapinchuk
TI  - Generic elements of a~Zariski-dense subgroup form an open subset
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 357
EP  - 375
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a7/
LA  - en
ID  - MMO_2017_78_2_a7
ER  - 
%0 Journal Article
%A G. Prasad
%A A. S. Rapinchuk
%T Generic elements of a~Zariski-dense subgroup form an open subset
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 357-375
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a7/
%G en
%F MMO_2017_78_2_a7
G. Prasad; A. S. Rapinchuk. Generic elements of a~Zariski-dense subgroup form an open subset. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 357-375. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a7/

[1] Cassels J. W. S., Fröhlich A. (eds.), Algebraic Number Theory, 2nd ed., London Mathematical Society, 2010 | MR | Zbl

[2] Chevalley C., “Les isogénies”, Séminaire Claude Chevalley, 2, no. 18, 1956–1958, 10 pp. | MR

[3] Janusz G. J., Algebraic number fields, Graduate Studies in Mathematics, 7, 2nd ed., AMS, Providence, RI, 1996 | MR | Zbl

[4] Lam T. Y., A first course in noncommutative rings, Graduate Texts in Mathematics, 131, 2nd ed., Springer-Verlag, New York, 2001 | DOI | MR | Zbl

[5] Lang S., Algebra, Graduate Texts in Mathematics, 211, Revised 3rd ed., Springer-Verlag, New York, 2002 | DOI | MR | Zbl

[6] Pi{nk} R., “Compact subgroups of linear algebraic groups”, J. Algebra, 206 (1998), 438–504 | DOI | MR | Zbl

[7] Pi{nk} R., “Strong approximation for Zariski dense subgroups over arbitrary global fields”, Comment. Math. Helv., 75:4 (2000), 608–643 | DOI | MR | Zbl

[8] Platonov V. P., Rapinchuk A. S., Algebraic groups and number theory, Pure and Applied Mathematics, 139, no. 4, Academic Press, Inc., Boston, MA, 1994 | MR | Zbl

[9] {Pr}asad G., Rapinchuk A. S., “Existence of irreducible $\mathbb R$-regular elements in Zariski-dense subgroups”, Math. Res. Lett., 10:1 (2003), 21–32 | DOI | MR

[10] {Pr}asad G., Rapinchuk A. S., “Weakly commensurable arithmetic groups and isospectral locally symmetric spaces”, Publ. Math. IHÉS, 109 (2009), 113–184 | DOI | MR

[11] {Pr}asad G., Rapinchuk A. S., “Generic elements in Zariski-dense subgroups and isospectral locally symmetric spaces”, Thin groups and superstrong approximation, Math. Sci. Res. Inst. Publ., 61, 2014, 211–252 | MR

[12] Serre J.-P., Lie algebras and Lie groups, Lecture Notes in Mathematics, 1500, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl

[13] Serre J.-P., Topics in Galois theory, Research Notes in Mathematics, 1, Jones and Bartlett Publishers, Boston, MA, 1992 | MR | Zbl

[14] Serre J.-P., Lectures on $N_X(p)$, Chapman Hall/CRC Research Notes in Mathematics, 11, CRC Press, Boca Raton, FL, 2012 | MR

[15] Schwartz J., Weak commensurability of Zariski-dense subgroups of algebraic groups defined over fields of positive characteristic, PhD dissertation, University of Virginia, 2014 | Zbl

[16] Vinberg È. B., “Rings of definition of dense subgroups of semisimple linear groups”, Izv. Akad. Nauk SSSR. Ser. Mat., 35 (1971), 45–55 (Russian) | MR | Zbl

[17] Weisfeiler B., “Strong approximation for Zariski-dense subgroups of semisimple algebraic groups”, Ann. Math. (2), 120:2 (1984), 271–315 | DOI | MR | Zbl