Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2017_78_2_a7, author = {G. Prasad and A. S. Rapinchuk}, title = {Generic elements of {a~Zariski-dense} subgroup form an open subset}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {357--375}, publisher = {mathdoc}, volume = {78}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a7/} }
TY - JOUR AU - G. Prasad AU - A. S. Rapinchuk TI - Generic elements of a~Zariski-dense subgroup form an open subset JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2017 SP - 357 EP - 375 VL - 78 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a7/ LA - en ID - MMO_2017_78_2_a7 ER -
G. Prasad; A. S. Rapinchuk. Generic elements of a~Zariski-dense subgroup form an open subset. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 357-375. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a7/
[1] Cassels J. W. S., Fröhlich A. (eds.), Algebraic Number Theory, 2nd ed., London Mathematical Society, 2010 | MR | Zbl
[2] Chevalley C., “Les isogénies”, Séminaire Claude Chevalley, 2, no. 18, 1956–1958, 10 pp. | MR
[3] Janusz G. J., Algebraic number fields, Graduate Studies in Mathematics, 7, 2nd ed., AMS, Providence, RI, 1996 | MR | Zbl
[4] Lam T. Y., A first course in noncommutative rings, Graduate Texts in Mathematics, 131, 2nd ed., Springer-Verlag, New York, 2001 | DOI | MR | Zbl
[5] Lang S., Algebra, Graduate Texts in Mathematics, 211, Revised 3rd ed., Springer-Verlag, New York, 2002 | DOI | MR | Zbl
[6] Pi{nk} R., “Compact subgroups of linear algebraic groups”, J. Algebra, 206 (1998), 438–504 | DOI | MR | Zbl
[7] Pi{nk} R., “Strong approximation for Zariski dense subgroups over arbitrary global fields”, Comment. Math. Helv., 75:4 (2000), 608–643 | DOI | MR | Zbl
[8] Platonov V. P., Rapinchuk A. S., Algebraic groups and number theory, Pure and Applied Mathematics, 139, no. 4, Academic Press, Inc., Boston, MA, 1994 | MR | Zbl
[9] {Pr}asad G., Rapinchuk A. S., “Existence of irreducible $\mathbb R$-regular elements in Zariski-dense subgroups”, Math. Res. Lett., 10:1 (2003), 21–32 | DOI | MR
[10] {Pr}asad G., Rapinchuk A. S., “Weakly commensurable arithmetic groups and isospectral locally symmetric spaces”, Publ. Math. IHÉS, 109 (2009), 113–184 | DOI | MR
[11] {Pr}asad G., Rapinchuk A. S., “Generic elements in Zariski-dense subgroups and isospectral locally symmetric spaces”, Thin groups and superstrong approximation, Math. Sci. Res. Inst. Publ., 61, 2014, 211–252 | MR
[12] Serre J.-P., Lie algebras and Lie groups, Lecture Notes in Mathematics, 1500, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[13] Serre J.-P., Topics in Galois theory, Research Notes in Mathematics, 1, Jones and Bartlett Publishers, Boston, MA, 1992 | MR | Zbl
[14] Serre J.-P., Lectures on $N_X(p)$, Chapman Hall/CRC Research Notes in Mathematics, 11, CRC Press, Boca Raton, FL, 2012 | MR
[15] Schwartz J., Weak commensurability of Zariski-dense subgroups of algebraic groups defined over fields of positive characteristic, PhD dissertation, University of Virginia, 2014 | Zbl
[16] Vinberg È. B., “Rings of definition of dense subgroups of semisimple linear groups”, Izv. Akad. Nauk SSSR. Ser. Mat., 35 (1971), 45–55 (Russian) | MR | Zbl
[17] Weisfeiler B., “Strong approximation for Zariski-dense subgroups of semisimple algebraic groups”, Ann. Math. (2), 120:2 (1984), 271–315 | DOI | MR | Zbl