From standard monomial theory to semi-toric degenerations via Newton--Okounkov
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 331-356.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hodge algebra structures on the homogeneous coordinate rings of Grassmann varieties provide semi-toric degenerations of these varieties. In this paper we construct these semi-toric degenerations using quasi-valuations and triangulations of Newton–Okounkov bodies.
@article{MMO_2017_78_2_a6,
     author = {X. Fang and P. Littelmann},
     title = {From standard monomial theory to semi-toric degenerations via {Newton--Okounkov}},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {331--356},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a6/}
}
TY  - JOUR
AU  - X. Fang
AU  - P. Littelmann
TI  - From standard monomial theory to semi-toric degenerations via Newton--Okounkov
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 331
EP  - 356
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a6/
LA  - en
ID  - MMO_2017_78_2_a6
ER  - 
%0 Journal Article
%A X. Fang
%A P. Littelmann
%T From standard monomial theory to semi-toric degenerations via Newton--Okounkov
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 331-356
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a6/
%G en
%F MMO_2017_78_2_a6
X. Fang; P. Littelmann. From standard monomial theory to semi-toric degenerations via Newton--Okounkov. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 331-356. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a6/

[1] D. Anderson, “Okounkov bodies and toric degenerations”, Math. Ann., 356 (2013), 1183–1202 | DOI | MR | Zbl

[2] V. Alexeev, M. Brion, “Toric degenerations of spherical varieties”, Selecta Math. (N. S.), 10:4 (2004), 453–478 | DOI | MR | Zbl

[3] F. Ardila, T. Bliem, D. Salazar, “Gelfand–Tsetlin polytopes and Feigin–Fourier–Littelmann–Vinberg polytopes as marked poset polytopes”, J. Combin. Theory. Ser. A, 118:8 (2011), 2454–2462 | DOI | MR | Zbl

[4] J. Brown, V. Lakshmibai, “Singular Loci of Grassmann–Hibi toric varieties”, Michigan Math. J., 59 (2010), 243–267 | DOI | MR | Zbl

[5] P. Caldero, “Toric degenerations of Schubert varieties”, Transform. Groups, 7 (2002), 51–60 | DOI | MR | Zbl

[6] R. Chirivì, “LS algebras and application to Schubert varieties”, Transform. Groups, 5:3 (2000), 245–264 | DOI | MR | Zbl

[7] D. Cox, J. Little, D. O'Shea, Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Math., 4, Springer, Cham, 2015 | DOI | MR | Zbl

[8] C. De Concini, D. Eisenbud, C. Procesi, Hodge algebras, Astérisque, 91, Société Mathématique de France, Paris, 1982 | MR

[9] R. Dehy, “Combinatorial results on Demazure modules”, J. Algebra, 205:2 (1998), 505–524 | DOI | MR | Zbl

[10] X. Fang, G. Fourier, P. Littelmann, “Essential bases and toric degenerations arising from birational sequences”, Adv. Math., 312 (2017), 107–149 | DOI | MR | Zbl

[11] X. Fang, G. Fourier, P. Littelmann, “On toric degenerations of flag varieties”, Representation Theory — Current Trends and Perspectives, Series of Congress Reports, EMS, 2017 | MR

[12] E. Feigin, G. Fourier, P. Littelmann, “PBW filtration and bases for irreducible modules in type $\text{\tt A}_n$”, Transform. Groups, 16:1 (2011), 71–89 | DOI | MR | Zbl

[13] E. Feigin, G. Fourier, P. Littelmann, “Favourable modules: filtrations, polytopes, Newton–Okounkov bodies and flat degenerations”, Transform. Groups, 22:2 (2017), 321–352 | DOI | MR | Zbl

[14] M. Gross, P. Hacking, S. Keel, M. Kontsevich, Canonical bases for cluster algebras, 2014, arXiv: 1411.1394 | MR

[15] N. Gonciulea, V. Lakshmibai, “Degenerations of flag and Schubert varieties to toric varieties”, Transform. Groups, 1:3 (1996), 215–248 | DOI | MR | Zbl

[16] G. Grätzer, Lattice theory: foundation, Birkhäuser/Springer Basel AG, Basel, 2011 | MR | Zbl

[17] T. Hibi, “Distributive lattices, affine semigroup rings and algebras with straightening laws”, Commutative algebra and combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987, 93–109 | DOI | MR

[18] T. Hibi, N. Li, “Chain polytopes and algebras with straightening laws”, Acta Math. Vietnam, 40:3 (2015), 447–452 | DOI | MR | Zbl

[19] W. Hodge, “Some enumerative results in the theory of forms”, Proc. Cambridge Philos. Soc., 39 (1943), 22–30 | DOI | MR | Zbl

[20] K. Kaveh, “Crystal bases and Newton–Okounkov bodies”, Duke Math. J., 164 (2015), 2461–2506 | DOI | MR | Zbl

[21] K. Kaveh, A. G. Khovanskii, “Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. of Math. (2), 176:2 (2012), 925–978 | DOI | MR | Zbl

[22] K. Kaveh, C. Manon, Khovanskii bases, higher rank valuations and tropical geometry, 2016, arXiv: 1610.00298

[23] V. Lakshmibai, J. Brown, The Grassmannian variety, Developments in Mathematics, 42, Springer, New York, 2015 | DOI | MR | Zbl

[24] V. Lakshmibai, K. N. Raghavan, Standard monomial theory, Encyclopaedia of Mathematical Sciences (Invariant Theory and Alg. Transform. Groups VIII), 137, Springer-Verlag, Berlin, 2008 | MR | Zbl

[25] V. Lakshmibai, C. S. Seshadri, “Geometry of $G/P$. V”, J. Algebra, 100 (1986), 462–557 | DOI | MR | Zbl

[26] V. Lakshmibai, C. S. Seshadri, “Standard monomial theory”, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, 1991, 279–322 | MR | Zbl

[27] P. Littelmann, “Contracting modules and standard monomial theory for symmetrizable Kac–Moody algebras”, J. Amer. Math. Soc., 11:3 (1998), 551–567 | DOI | MR | Zbl

[28] C. S. Seshadri, Introduction to the theory of standard monomials, Texts and Readings in Mathematics, 46, 2nd ed., Hindustan Book Agency, New Delhi, 2014 | MR | Zbl

[29] C. S. Seshadri, “Standard monomials — a historical account”, Collected papers of C. S. Seshadri, v. 2, Manoj Prakashan, Madras, 2012 | MR

[30] R. P. Stanley, “Two poset polytopes”, Discrete Comput. Geom., 1:1 (1986), 9–23 | DOI | MR | Zbl