Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2017_78_2_a5, author = {C. De Concini and P. Papi}, title = {On some modules of covariants for a~reflection group}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {311--330}, publisher = {mathdoc}, volume = {78}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a5/} }
C. De Concini; P. Papi. On some modules of covariants for a~reflection group. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 311-330. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a5/
[1] A. Broer, “The sum of generalized exponents and Chevalley's restriction theorem for modules of covariants”, Indag. Math. (N.S.), 6:4 (1995), 385–396 | DOI | MR | Zbl
[2] R. Chirivì, S. Kumar, A. Maffei, “Components of $V(\rho)\otimes V(\rho)$”, Transform. Groups, 22:3 (2017), 645–650 | DOI | MR | Zbl
[3] S. De Concini, P. Papi, C. Procesi, “The adjoint representation inside the exterior algebra of a simple Lie algebra”, Adv. Math., 280 (2015), 21–46 | DOI | MR | Zbl
[4] S. De Concini, P. Möseneder Frajria, P. Papi, C. Procesi, “On special covariants in the exterior algebra of a simple Lie algebra”, Rend. Lincei Mat. Appl., 25 (2014), 331–344 | MR | Zbl
[5] C.F. Dunkl, M.F.E. de Jeu, E.M. Opdam, “Singular polynomials for finite reflection groups”, Trans. AMS, 346:1 (1994), 237–256 | DOI | MR | Zbl
[6] J. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. in Adv. Math., 29, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[7] Funct. Anal. Appl., 24:3 (1990), 172–176 | DOI | MR | Zbl
[8] B. Kostant, “Eigenvalues of a Laplacian and commutative Lie subalgebras”, Topology, 3, suppl. 2 (1965), 147–159 | DOI | MR | Zbl
[9] B. Kostant, “Clifford algebra analogue of the Hopf–Koszul–Samelson theorem, the $\rho$–decomposition $C(\mathfrak{g})=End V_\rho\otimes C(P)$, and the $\mathfrak{g}$–module structure of $\bigwedge \mathfrak{g}$”, Adv. Math., 125 (1997), 275–350 | DOI | MR | Zbl
[10] M. Marcus, H. Minc, “Generalized matrix functions”, Trans. AMS, 116 (1965), 316–329 | DOI | MR | Zbl
[11] Funct. Anal. Appl., 26:2 (1992), 143–145 | DOI | MR | Zbl
[12] D. Panyushev, “Invariant theory of little adjoint modules”, J. Lie Theory, 22:3 (2012), 803–816 | MR | Zbl
[13] M. Reeder, “Exterior powers of the adjoint representation”, Canad. J. Math., 49:1 (1997), 133–159 | DOI | MR | Zbl
[14] V. Reiner, A. Shepler, Invariant derivations and differential forms for reflection groups, arXiv: 1612.01031
[15] L. Solomon, “Invariants of finite reflection groups”, Nagoya Math. J., 22 (1963), 57–64 | DOI | MR | Zbl
[16] J. Stembridge, “First layer formulas for characters of $SL(n,\mathbf{C})$”, Trans. AMS, 299 (1987), 319–350 | MR | Zbl
[17] J. Stembridge, “Graded multiplicities in the Macdonald kernel, Part I”, Int. Math. Res. Pap., 2005, no. 4, 183–236 | DOI | MR | Zbl