On some modules of covariants for a~reflection group
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 311-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak g$ be a simple Lie algebra with Cartan subalgebra $\mathfrak{h}$ and Weyl group $W$. We build up a graded isomorphism $\smash{\bigl(\bigwedge\mathfrak{h}\otimes\mathcal H\otimes \mathfrak{h}\big)\vphantom)^W}\to \bigl(\bigwedge \mathfrak{g}\otimes \mathfrak{g}\big)^\mathfrak{g}$ of $\bigl(\bigwedge \mathfrak{g}\big)^\mathfrak{g}\cong S(\mathfrak{h})^W$-modules, where $\mathcal H$ is the space of $W$-harmonics. In this way we prove an enhanced form of a conjecture of Reeder for the adjoint representation.
@article{MMO_2017_78_2_a5,
     author = {C. De Concini and P. Papi},
     title = {On some modules of covariants for a~reflection group},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {311--330},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a5/}
}
TY  - JOUR
AU  - C. De Concini
AU  - P. Papi
TI  - On some modules of covariants for a~reflection group
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 311
EP  - 330
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a5/
LA  - en
ID  - MMO_2017_78_2_a5
ER  - 
%0 Journal Article
%A C. De Concini
%A P. Papi
%T On some modules of covariants for a~reflection group
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 311-330
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a5/
%G en
%F MMO_2017_78_2_a5
C. De Concini; P. Papi. On some modules of covariants for a~reflection group. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 311-330. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a5/

[1] A. Broer, “The sum of generalized exponents and Chevalley's restriction theorem for modules of covariants”, Indag. Math. (N.S.), 6:4 (1995), 385–396 | DOI | MR | Zbl

[2] R. Chirivì, S. Kumar, A. Maffei, “Components of $V(\rho)\otimes V(\rho)$”, Transform. Groups, 22:3 (2017), 645–650 | DOI | MR | Zbl

[3] S. De Concini, P. Papi, C. Procesi, “The adjoint representation inside the exterior algebra of a simple Lie algebra”, Adv. Math., 280 (2015), 21–46 | DOI | MR | Zbl

[4] S. De Concini, P. Möseneder Frajria, P. Papi, C. Procesi, “On special covariants in the exterior algebra of a simple Lie algebra”, Rend. Lincei Mat. Appl., 25 (2014), 331–344 | MR | Zbl

[5] C.F. Dunkl, M.F.E. de Jeu, E.M. Opdam, “Singular polynomials for finite reflection groups”, Trans. AMS, 346:1 (1994), 237–256 | DOI | MR | Zbl

[6] J. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. in Adv. Math., 29, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[7] Funct. Anal. Appl., 24:3 (1990), 172–176 | DOI | MR | Zbl

[8] B. Kostant, “Eigenvalues of a Laplacian and commutative Lie subalgebras”, Topology, 3, suppl. 2 (1965), 147–159 | DOI | MR | Zbl

[9] B. Kostant, “Clifford algebra analogue of the Hopf–Koszul–Samelson theorem, the $\rho$–decomposition $C(\mathfrak{g})=End V_\rho\otimes C(P)$, and the $\mathfrak{g}$–module structure of $\bigwedge \mathfrak{g}$”, Adv. Math., 125 (1997), 275–350 | DOI | MR | Zbl

[10] M. Marcus, H. Minc, “Generalized matrix functions”, Trans. AMS, 116 (1965), 316–329 | DOI | MR | Zbl

[11] Funct. Anal. Appl., 26:2 (1992), 143–145 | DOI | MR | Zbl

[12] D. Panyushev, “Invariant theory of little adjoint modules”, J. Lie Theory, 22:3 (2012), 803–816 | MR | Zbl

[13] M. Reeder, “Exterior powers of the adjoint representation”, Canad. J. Math., 49:1 (1997), 133–159 | DOI | MR | Zbl

[14] V. Reiner, A. Shepler, Invariant derivations and differential forms for reflection groups, arXiv: 1612.01031

[15] L. Solomon, “Invariants of finite reflection groups”, Nagoya Math. J., 22 (1963), 57–64 | DOI | MR | Zbl

[16] J. Stembridge, “First layer formulas for characters of $SL(n,\mathbf{C})$”, Trans. AMS, 299 (1987), 319–350 | MR | Zbl

[17] J. Stembridge, “Graded multiplicities in the Macdonald kernel, Part I”, Int. Math. Res. Pap., 2005, no. 4, 183–236 | DOI | MR | Zbl