On some modules of covariants for a~reflection group
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 311-330

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak g$ be a simple Lie algebra with Cartan subalgebra $\mathfrak{h}$ and Weyl group $W$. We build up a graded isomorphism $\smash{\bigl(\bigwedge\mathfrak{h}\otimes\mathcal H\otimes \mathfrak{h}\big)\vphantom)^W}\to \bigl(\bigwedge \mathfrak{g}\otimes \mathfrak{g}\big)^\mathfrak{g}$ of $\bigl(\bigwedge \mathfrak{g}\big)^\mathfrak{g}\cong S(\mathfrak{h})^W$-modules, where $\mathcal H$ is the space of $W$-harmonics. In this way we prove an enhanced form of a conjecture of Reeder for the adjoint representation.
@article{MMO_2017_78_2_a5,
     author = {C. De Concini and P. Papi},
     title = {On some modules of covariants for a~reflection group},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {311--330},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a5/}
}
TY  - JOUR
AU  - C. De Concini
AU  - P. Papi
TI  - On some modules of covariants for a~reflection group
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 311
EP  - 330
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a5/
LA  - en
ID  - MMO_2017_78_2_a5
ER  - 
%0 Journal Article
%A C. De Concini
%A P. Papi
%T On some modules of covariants for a~reflection group
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 311-330
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a5/
%G en
%F MMO_2017_78_2_a5
C. De Concini; P. Papi. On some modules of covariants for a~reflection group. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 311-330. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a5/