Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2017_78_2_a3, author = {T. Arakawa and A. Premet}, title = {Quantizing}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {261--281}, publisher = {mathdoc}, volume = {78}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a3/} }
T. Arakawa; A. Premet. Quantizing. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 261-281. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a3/
[1] T. Arakawa, “Representation theory of superconformal algebras and the Kac–Roan–Wakimoto conjecture”, Duke Math. J., 130:3 (2005), 435–478 | DOI | MR | Zbl
[2] T. Arakawa, “A remark on the $C_2$ cofiniteness condition on vertex algebras”, Math. Z., 270:1–2 (2012), 559–575 | DOI | MR | Zbl
[3] T. Arakawa, “W-algebras at the critical level”, Contemp. Math., 565, AMS, Providence, RI, 2012, 1–14 | DOI | MR
[4] T. Arakawa, “Associated varieties of modules over Kac–Moody algebras and $C_2$-cofiniteness of W-algebras”, Int. Math. Res. Not., 2015, no. 22, 11605–11666 | MR | Zbl
[5] T. Arakawa, C. H. Lam, H. Yamada, “Zhu's algebra, $C_2$-algebra and $C_2$-cofiniteness of parafermion vertex operator algebras”, Adv. Math., 264 (2014), 261–295 | DOI | MR | Zbl
[6] R. E. Borcherds, “Vertex algebras, Kac–Moody algebras, and the Monster”, Proc. Nat. Acad. Sci. U.S.A., 83:10 (1986), 3068–3071 | DOI | MR
[7] R. W. Carter, “Finite groups of Lie type. Conjugacy classes and complex characters”, Pure Appl. Math., John Wiley Sons, New York, 1985 | MR | Zbl
[8] V. I. Cherednik, “A new interpretation of Gel'fand–Tzetlin bases”, Duke Math. J., 54:2 (1987), 563–577 | DOI | MR | Zbl
[9] A. Chervov, G. Falqui, L. Rybnikov, “Limits of Gaudin algebras, quantization of bending flows, Jucys–Murphy elements and Gelfand–Tsetlin bases”, Lett. Math. Phys., 91:2 (2010), 129–150 | DOI | MR | Zbl
[10] J.-Y. Charbonnel, A. Moreau, “The index of centralizers of elements of reductive Lie algebras”, Doc. Math., 15 (2010), 387–421 | MR | Zbl
[11] J.-Y. Charbonnel, A. Moreau, “The symmetric invariants of centralizers and Slodowy grading”, Math. Z., 282 (2016), 273–339 | DOI | MR | Zbl
[12] A. V. Chervov, A. I. Molev, “On higher-order Sugawara operators”, Int. Math. Res. Not., 9 (2009), 1612–1635 | MR | Zbl
[13] A. G. Elashvili, V. G. Kac, “Classification of good gradings of simple Lie algebras”, Lie groups and invariant theory, AMS Transl. Ser. 2, 213, AMS, Providence, RI, 2005, 85–104 | MR | Zbl
[14] E. Frenkel, D. Ben-Zvi, Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88, 2nd ed., AMS, Providence, RI, 2004 | DOI | MR | Zbl
[15] B. Feigin, E. Frenkel, “Affine Kac–Moody algebras at the critical level and Gel'fand–Dikiĭ algebras”, Infinite analysis (Kyoto, 1991), v. A, B, Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, 197–215 | MR
[16] B. Feigin, E. Frenkel, V. Toledano Laredo, “Gaudin models with irregular singularities”, Adv. Math., 223:3 (2010), 873–948 | DOI | MR | Zbl
[17] E. Frenkel, “Wakimoto modules, opers and the center at the critical level”, Adv. Math., 195:2 (2005), 297–404 | DOI | MR | Zbl
[18] V. G. Kac, Vertex algebras for beginners, Univ. Lect. Ser., 10, 2, AMS, Providence, RI, 1998 | DOI | MR | Zbl
[19] V. G. Kac, S.-S. Roan, M. Wakimoto, “Quantum reduction for affine superalgebras”, Comm. Math. Phys., 241:2–3 (2003), 307–342 | DOI | MR | Zbl
[20] V. G. Kac, M. Wakimoto, “Quantum reduction and representation theory of superconformal algebras”, Adv. Math., 185:2 (2004), 400–458 | DOI | MR | Zbl
[21] B. Kostant, “Lie group representations on polynomial rings”, Amer. J. Math., 85 (1963), 327–404 | DOI | MR | Zbl
[22] H. Li, “Abelianizing vertex algebras”, Comm. Math. Phys., 259:2 (2005), 391–411 | DOI | MR | Zbl
[23] A. S. Miščenko, A. T. Fomenko, “Euler equation on finite-dimensional Lie groups”, Izv. Akad. Nauk SSSR Ser. Mat., 42:2 (1978), 396–415, 471 (Russian) | MR
[24] M. Nazarov, G. Olshanski, “Bethe subalgebras in twisted Yangians”, Comm. Math. Phys., 178:2 (1996), 483–506 | DOI | MR | Zbl
[25] A. Ooms, M. Van den Bergh, “A degree inequality for Lie algebras with a regular Poisson semi-center”, J. Algebra, 323:2 (2010), 305–322 | DOI | MR | Zbl
[26] D. I. Panyushev, “Some amazing properties of spherical nilpotent orbits”, Math. Z., 245:3 (2003), 557–580 | DOI | MR | Zbl
[27] D. Panyushev, A. Premet, O. Yakimova, “On symmetric invariants of centralisers in reductive Lie algebras”, J. Algebra, 313:1 (2007), 343–391 | DOI | MR | Zbl
[28] D. Panyushev, O. Yakimova, “The argument shift method and maximal commutative subalgebras of Poisson algebras”, Math. Res. Lett., 15:2 (2008), 239–249 | DOI | MR | Zbl
[29] M. Raïs, P. Tauvel, “Indices et polinômes invariants pour cetaines algèbres de Lie”, J. Reine Angew. Math., 425 (1992), 123–140 | MR | Zbl
[30] L. G. Rybnikov, “The shift of invariants method and the Gaudin model”, Funct. Anal. Appl., 40:3 (2006), 188–199 | DOI | MR | Zbl
[31] S. Skryabin, “Invariants of finite group schemes”, J. London Math. Soc. (2), 65:2 (2002), 339–360 | DOI | MR | Zbl
[32] D. V. Talalaev, “The quantum Gaudin system”, Funct. Anal. Appl., 40:1 (2006), 73–77 | DOI | MR | Zbl
[33] A. A. Tarasov, “On some commutative subalgebras in the universal enveloping algebra of the Lie algebra $\mathfrak{gl}(n,\bf C)$”, Sb. Math., 191:9–10 (2000), 1375–1382 | DOI | MR | Zbl
[34] O. S. Yakimova, “Surprising properties of centralisers in classical Lie algebras”, Ann. Inst. Fourier, Grenoble, 59:3 (2009), 903–935 | DOI | MR | Zbl
[35] Y. Zhu, “Modular invariance of characters of vertex operator algebras”, J. Amer. Math. Soc., 9:1 (1996), 237–302 | DOI | MR | Zbl
[36] E. B. Vinberg, “On certain commutative subalgebras of a universal enveloping algebra”, Math. USSR-Izv., 36:3 (1991), 1–22 | DOI | MR | Zbl