The dual group of a~spherical variety
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 227-260

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a spherical variety for a connected reductive group $G$. Work of Gaitsgory–Nadler strongly suggests that the Langlands dual group $G^\vee$ of $G$ has a subgroup whose Weyl group is the little Weyl group of $X$. Sakellaridis–Venkatesh defined a refined dual group $G^\vee_X$ and verified in many cases that there exists an isogeny $\varphi$ from $G^\vee_X$ to $G^\vee$. In this paper, we establish the existence of $\varphi$ in full generality. Our approach is purely combinatorial and works (despite the title) for arbitrary $G$-varieties.
@article{MMO_2017_78_2_a2,
     author = {F. Knop and B. Schalke},
     title = {The dual group of a~spherical variety},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {227--260},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a2/}
}
TY  - JOUR
AU  - F. Knop
AU  - B. Schalke
TI  - The dual group of a~spherical variety
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 227
EP  - 260
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a2/
LA  - en
ID  - MMO_2017_78_2_a2
ER  - 
%0 Journal Article
%A F. Knop
%A B. Schalke
%T The dual group of a~spherical variety
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 227-260
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a2/
%G en
%F MMO_2017_78_2_a2
F. Knop; B. Schalke. The dual group of a~spherical variety. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 227-260. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a2/