The dual group of a~spherical variety
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 227-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a spherical variety for a connected reductive group $G$. Work of Gaitsgory–Nadler strongly suggests that the Langlands dual group $G^\vee$ of $G$ has a subgroup whose Weyl group is the little Weyl group of $X$. Sakellaridis–Venkatesh defined a refined dual group $G^\vee_X$ and verified in many cases that there exists an isogeny $\varphi$ from $G^\vee_X$ to $G^\vee$. In this paper, we establish the existence of $\varphi$ in full generality. Our approach is purely combinatorial and works (despite the title) for arbitrary $G$-varieties.
@article{MMO_2017_78_2_a2,
     author = {F. Knop and B. Schalke},
     title = {The dual group of a~spherical variety},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {227--260},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a2/}
}
TY  - JOUR
AU  - F. Knop
AU  - B. Schalke
TI  - The dual group of a~spherical variety
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 227
EP  - 260
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a2/
LA  - en
ID  - MMO_2017_78_2_a2
ER  - 
%0 Journal Article
%A F. Knop
%A B. Schalke
%T The dual group of a~spherical variety
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 227-260
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a2/
%G en
%F MMO_2017_78_2_a2
F. Knop; B. Schalke. The dual group of a~spherical variety. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 227-260. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a2/

[1] D. Ahiezer, “Equivariant completions of homogeneous algebraic varieties by homogeneous divisors”, Ann. Global Anal. Geom., 1 (1983), 49–78 | DOI | MR | Zbl

[2] N. Bourbaki, Éléments de mathématique, Chap. IV: Groupes de Coxeter et systèmes de Tits. Chap. V: Groupes engendrés par des réflexions. Shap. VI: systèmes de racines algèbres de Lie, v. XXXIV, Actualités Scientifiques et Industrielles, 1337, Groupes et algèbres de Lie, Hermann, Paris, 1968, 288 pp. (loose errata) | MR | Zbl

[3] A. Borel, “Automorphic $L$-functions”, Automorphic forms, representations and $L$-functions, Sympos. Pure Math. (Oregon State Univ., Corvallis, Ore., 1977), Proc. Sympos. Pure Math., 33, AMS, Providence, RI, 1977, 27–61 | MR

[4] A. Borel, J. De Siebenthal, “Les sous-groupes fermés de rang maximum des groupes de Lie clos”, Comment. Math. Helv., 23 (1949), 200–221 | DOI | MR | Zbl

[5] P. Bravi, “Primitive spherical systems”, Trans. AMS, 365 (2013), 361–407, arXiv: 0909.3765 | DOI | MR | Zbl

[6] P. Bravi, G. Pezzini, “The spherical systems of the wonderful reductive subgroups”, J. Lie Theory, 25 (2015), 105–123, arXiv: 1109.6777 | MR | Zbl

[7] P. Bravi, G. Pezzini, “Primitive wonderful varieties”, Math. Z., 282 (2016), 1067–1096, arXiv: 1106.3187 | DOI | MR | Zbl

[8] M. Brion, “Vers une généralisation des espaces symétriques”, J. Algebra, 134 (1990), 115–143 | DOI | MR | Zbl

[9] M. Brion, F. Pauer, “Valuations des espaces homogènes sphériques”, Comment. Math. Helv., 62 (1987), 265–285 | DOI | MR | Zbl

[10] Y. Z. Flicker, “On distinguished representations”, J. Reine Angew. Math., 418 (1991), 139–172 | MR | Zbl

[11] D. Gaitsgory, D. Nadler, “Spherical varieties and Langlands duality”, Mosc. Math. J., 10 (2010), 65–137, arXiv: math/0611323 | MR | Zbl

[12] V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990, xxii+400 pp. | MR | Zbl

[13] D.A. Karpuk, “Cohomology of the Weil group of a $p$-adic field”, J. Number Theory, 133 (2013), 1270–1288 | DOI | MR | Zbl

[14] F. Knop, “Über Bewertungen, welche unter einer reduktiven Gruppe invariant sind”, Math. Ann., 295 (1993), 333–363 | DOI | MR | Zbl

[15] F. Knop, “The asymptotic behavior of invariant collective motion”, Invent. Math., 116 (1994), 309–328 | DOI | MR | Zbl

[16] F. Knop, “A Harish-Chandra homomorphism for reductive group actions”, Ann. of Math. (2), 140 (1994), 253–288 | DOI | MR | Zbl

[17] F. Knop, “Automorphisms, root systems, and compactifications of homogeneous varieties”, J. AMS, 9 (1996), 153–174 | MR | Zbl

[18] F. Knop, “Localization of spherical varieties”, Algebra Number Theory, 8 (2014), 703–728, arXiv: 1303.2561 | DOI | MR | Zbl

[19] F. Knop, “Spherical roots of spherical varieties”, Ann. Inst. Fourier (Grenoble), 64 (2014), 2503–2526, arXiv: 1303.2466 | DOI | MR | Zbl

[20] F. Knop, B. Krötz, Reductive group actions, 2016, 62 pp., arXiv: 1604.01005

[21] M. Krämer, “Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen”, Compositio Math., 38 (1979), 129–153 | MR | Zbl

[22] D. Luna, “Variétés sphériques de type $A$”, Publ. Math. IHÉS, 94 (2001), 161–226 | DOI | MR | Zbl

[23] N. Ressayre, “Spherical homogeneous spaces of minimal rank”, Adv. Math., 224 (2010), 1784–1800, arXiv: 0909.0653 | DOI | MR | Zbl

[24] Y. Sakellaridis, A. Venkatesh, Periods and harmonic analysis on spherical varieties, 2012, 291 pp., arXiv: 1203.0039 | MR

[25] B. Schalke, Beiträge zur Theorie sphärischer Varietäten: Die duale Gruppe und Betrachtungen in positiver Charakteristik, Dissertation, FAU Erlangen-Nürnberg, 2016

[26] T. A. Springer, Linear algebraic groups, Progr. Math., 9, 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 1998, xiv+334 pp. | MR | Zbl

[27] B. Wasserman, “Wonderful varieties of rank two”, Transform. Groups, 1 (1996), 375–403 | DOI | MR | Zbl