Automorphism groups of affine varieties and a~characterization of affine~$n$-space
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 209-226
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the automorphism group of affine $n$-space $\mathbb{A}^n$ determines $\mathbb{A}^n$
up to isomorphism: If $X$ is a connected affine variety such that $\mathrm{Aut}(X)
\simeq \mathrm{Aut}(\mathbb{A}^n)$ as ind-groups, then $X \simeq \mathbb{A}^n$ as varieties.
We also show that every torus appears as $\mathrm{Aut}(X)$ for a suitable irreducible
affine variety $X$, but that $\mathrm{Aut}(X)$ cannot be isomorphic to a semisimple
group. In fact, if $\mathrm{Aut}(X)$ is finite dimensional and if $X \not\simeq \mathbb{A}^1$,
then the connected component $\mathrm{Aut}(X)^{\circ}$ is a torus.
Concerning the structure of $\mathrm{Aut}(\mathbb{A}^n)$ we prove that any homomorphism
$\mathrm{Aut}(\mathbb{A}^n) \to \mathcal{G}$ of ind-groups either factors through
$\mathrm{jac}\colon{\mathrm{Aut}(\mathbb{A}^n)} \to {\Bbbk^*}$ where $\mathrm{jac}$ is the Jacobian determinant,
or it is a closed immersion. For $\mathrm{SAut}(\mathbb{A}^n):=\ker(\mathrm{jac})\subset \mathrm{Aut}(\mathbb{A}^n)$ we
show that every nontrivial homomorphism $\mathrm{SAut}(\mathbb{A}^n) \to \mathcal{G}$ is
a closed immersion.
Finally, we prove that every non-trivial homomorphism $\phi\colon{\mathrm{SAut}(\mathbb{A}^n)}
\to\mathrm{SAut}(\mathbb{A}^n)$ is an automorphism, and that $\phi$ is given by conjugation with
an element from $\mathrm{Aut}(\mathbb{A}^n)$.
@article{MMO_2017_78_2_a1,
author = {H. Kraft},
title = {Automorphism groups of affine varieties and a~characterization of affine~$n$-space},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {209--226},
publisher = {mathdoc},
volume = {78},
number = {2},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a1/}
}
TY - JOUR AU - H. Kraft TI - Automorphism groups of affine varieties and a~characterization of affine~$n$-space JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2017 SP - 209 EP - 226 VL - 78 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a1/ LA - en ID - MMO_2017_78_2_a1 ER -
H. Kraft. Automorphism groups of affine varieties and a~characterization of affine~$n$-space. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 209-226. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a1/