Automorphism groups of affine varieties and a~characterization of affine~$n$-space
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 209-226

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the automorphism group of affine $n$-space $\mathbb{A}^n$ determines $\mathbb{A}^n$ up to isomorphism: If $X$ is a connected affine variety such that $\mathrm{Aut}(X) \simeq \mathrm{Aut}(\mathbb{A}^n)$ as ind-groups, then $X \simeq \mathbb{A}^n$ as varieties. We also show that every torus appears as $\mathrm{Aut}(X)$ for a suitable irreducible affine variety $X$, but that $\mathrm{Aut}(X)$ cannot be isomorphic to a semisimple group. In fact, if $\mathrm{Aut}(X)$ is finite dimensional and if $X \not\simeq \mathbb{A}^1$, then the connected component $\mathrm{Aut}(X)^{\circ}$ is a torus. Concerning the structure of $\mathrm{Aut}(\mathbb{A}^n)$ we prove that any homomorphism $\mathrm{Aut}(\mathbb{A}^n) \to \mathcal{G}$ of ind-groups either factors through $\mathrm{jac}\colon{\mathrm{Aut}(\mathbb{A}^n)} \to {\Bbbk^*}$ where $\mathrm{jac}$ is the Jacobian determinant, or it is a closed immersion. For $\mathrm{SAut}(\mathbb{A}^n):=\ker(\mathrm{jac})\subset \mathrm{Aut}(\mathbb{A}^n)$ we show that every nontrivial homomorphism $\mathrm{SAut}(\mathbb{A}^n) \to \mathcal{G}$ is a closed immersion. Finally, we prove that every non-trivial homomorphism $\phi\colon{\mathrm{SAut}(\mathbb{A}^n)} \to\mathrm{SAut}(\mathbb{A}^n)$ is an automorphism, and that $\phi$ is given by conjugation with an element from $\mathrm{Aut}(\mathbb{A}^n)$.
@article{MMO_2017_78_2_a1,
     author = {H. Kraft},
     title = {Automorphism groups of affine varieties and a~characterization of affine~$n$-space},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {209--226},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a1/}
}
TY  - JOUR
AU  - H. Kraft
TI  - Automorphism groups of affine varieties and a~characterization of affine~$n$-space
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 209
EP  - 226
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a1/
LA  - en
ID  - MMO_2017_78_2_a1
ER  - 
%0 Journal Article
%A H. Kraft
%T Automorphism groups of affine varieties and a~characterization of affine~$n$-space
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 209-226
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a1/
%G en
%F MMO_2017_78_2_a1
H. Kraft. Automorphism groups of affine varieties and a~characterization of affine~$n$-space. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 209-226. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a1/