Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2017_78_2_a1, author = {H. Kraft}, title = {Automorphism groups of affine varieties and a~characterization of affine~$n$-space}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {209--226}, publisher = {mathdoc}, volume = {78}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a1/} }
TY - JOUR AU - H. Kraft TI - Automorphism groups of affine varieties and a~characterization of affine~$n$-space JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2017 SP - 209 EP - 226 VL - 78 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a1/ LA - en ID - MMO_2017_78_2_a1 ER -
H. Kraft. Automorphism groups of affine varieties and a~characterization of affine~$n$-space. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 209-226. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a1/
[1] I. V. Arzhantsev, S. A. Gaĭfullin, “The automorphism group of a rigid affine variety”, Math. Nachr., 290:5–6 (2017), 662–671 | DOI | MR | Zbl
[2] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, “Flexible varieties and automorphism groups”, Duke Math. J., 162:4 (2013), 767–823 | DOI | MR | Zbl
[3] A. Kanel-Belov, J.-T. Yu, A. Elishev, On the {Z}ariski topology of automorphism groups of affine spaces and algebras, 2012, arXiv: 1207.2045v1
[4] Y. Berest, G. Wilson, “Automorphisms and ideals of the Weyl algebra”, Math. Ann., 318:1 (2000), 127–147 | DOI | MR | Zbl
[5] H. Derksen, G. Kemper, “Computing invariants of algebraic groups in arbitrary characteristic”, Adv. Math., 217:5 (2008), 2089–2129 | DOI | MR | Zbl
[6] J.-P. Furter, H. Kraft, On the geometry of automorphism groups of affine varieties, in preparation, 2017 | MR
[7] J. Igusa, “Geometry of absolutely admissible representations”, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, 373–452 | MR
[8] Z. Jelonek, “Identity sets for polynomial automorphisms”, J. Pure Appl. Algebra, 76:3 (1991), 333–337 | DOI | MR | Zbl
[9] Z. Jelonek, “On the group of automorphisms of a quasi-affine variety”, Math. Ann., 362:1–2 (2015) | MR | Zbl
[10] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, 1, Friedr. Vieweg Sohn, Braunschweig, 1984 | MR
[11] H. Kraft, Algebraic Transformation Groups: An Introduction, , Mathematisches Institut, Universität Basel, 2016 http://kraftadmin.wixsite.com/hpkraft | Zbl
[12] H. Kraft, A. Regeta, “Automorphisms of the Lie algebra of vector fields on affine $n$-space”, J. Eur. Math. Soc. (JEMS), 19:5 (2017), 1577–1588 | DOI | MR | Zbl
[13] H. Kraft, A. Regeta, S. Zimmermann, Small affine $SL_n$-varieties, in preparation, 2017
[14] S. Kumar, Kac–Moody groups, their flag varieties and representation theory, Progr. Math., 204, Birkhäuser Boston Inc., Boston, MA, 2002 | MR | Zbl
[15] A. Liendo, “Roots of the affine Cremona group”, Transform. Groups, 16:4 (2011), 1137–1142 | DOI | MR | Zbl
[16] Ch. P. Ramanujam, “A note on automorphism groups of algebraic varieties”, Math. Ann., 156 (1964), 25–33 | DOI | MR | Zbl
[17] A. Regeta, Characterization of $n$-dimensional normal affine $SL_n$-varieties, arXiv: 1702.01173 [math.AG]
[18] I. R. Shafarevich, “On some infinite-dimensional groups”, Rend. Mat. e Appl. (5), 25:1–2 (1966), 208–212 | MR | Zbl
[19] I. R. Shafarevich, “On some infinite-dimensional groups. II”, Math. USSR-Izv., 18:1 (1982), 185–194. | DOI | MR | Zbl