Symmetric invariants related to representations of exceptional simple
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 195-207

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify the finite-dimensional rational representations $V$ of the exceptional algebraic groups $G$ with $\mathfrak g=\mathsf{Lie\,} G$ such that the symmetric invariants of the semi-direct product $\mathfrak g\ltimes V\!$, where $V$ is an Abelian ideal, form a polynomial ring.
@article{MMO_2017_78_2_a0,
     author = {D. I. Panyushev and O. S. Yakimova},
     title = {Symmetric invariants related to representations of exceptional simple},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {195--207},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a0/}
}
TY  - JOUR
AU  - D. I. Panyushev
AU  - O. S. Yakimova
TI  - Symmetric invariants related to representations of exceptional simple
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 195
EP  - 207
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a0/
LA  - en
ID  - MMO_2017_78_2_a0
ER  - 
%0 Journal Article
%A D. I. Panyushev
%A O. S. Yakimova
%T Symmetric invariants related to representations of exceptional simple
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 195-207
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a0/
%G en
%F MMO_2017_78_2_a0
D. I. Panyushev; O. S. Yakimova. Symmetric invariants related to representations of exceptional simple. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 195-207. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a0/