Symmetric invariants related to representations of exceptional simple
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 195-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify the finite-dimensional rational representations $V$ of the exceptional algebraic groups $G$ with $\mathfrak g=\mathsf{Lie\,} G$ such that the symmetric invariants of the semi-direct product $\mathfrak g\ltimes V\!$, where $V$ is an Abelian ideal, form a polynomial ring.
@article{MMO_2017_78_2_a0,
     author = {D. I. Panyushev and O. S. Yakimova},
     title = {Symmetric invariants related to representations of exceptional simple},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {195--207},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a0/}
}
TY  - JOUR
AU  - D. I. Panyushev
AU  - O. S. Yakimova
TI  - Symmetric invariants related to representations of exceptional simple
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 195
EP  - 207
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a0/
LA  - en
ID  - MMO_2017_78_2_a0
ER  - 
%0 Journal Article
%A D. I. Panyushev
%A O. S. Yakimova
%T Symmetric invariants related to representations of exceptional simple
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 195-207
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a0/
%G en
%F MMO_2017_78_2_a0
D. I. Panyushev; O. S. Yakimova. Symmetric invariants related to representations of exceptional simple. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 2, pp. 195-207. http://geodesic.mathdoc.fr/item/MMO_2017_78_2_a0/

[1] O. M. Adamovich, E. O. Golovina, “Simple linear Lie groups having a free algebra of invariants”, Selecta Math. Sov., 3 (1984), 183–220 | MR | Zbl | Zbl

[2] A. G. Èlašvili, “Canonical form and stationary subalgebras of points of general position for simple linear Lie groups”, Funct. Anal. Appl., 6 (1972), 44–53 | DOI | MR | Zbl

[3] F. Fauquant-Millet, A. Joseph, “La somme des faux degrés — un mystère en théorie des invariants (The sum of the false degrees — A mystery in the theory of invariants)”, Adv. Math., 217 (2008), 1476–1520 | DOI | MR | Zbl

[4] S. J. Haris, “Some irreducible representations of exceptional algebraic groups”, Amer. J. Math., 93 (1971), 75–106 | DOI | MR | Zbl

[5] A. Joseph, “On semi-invariants and index for biparabolic (seaweed) algebras, II”, J. Algebra, 312 (2007), 158–193 | DOI | MR | Zbl

[6] V. G. Kac, V. L. Popov, E. B. Vinberg, “Sur les groupes linéaires algébriques dont l'algèbre des invariants est libre”, C. R. Acad. Sci. Paris Sér. A–B, 283:12 (1976), A875–A878. | MR

[7] P. Littelmann,, “Koreguläre und äquidimensionale Darstellungen”, J. Algebra, 123:1 (1989), 193–222 | DOI | MR | Zbl

[8] D. Panyushev, “Semi-direct products of Lie algebras and their invariants”, Publ. Res. Inst. Math. Sci. (Kyoto Univ.), 43:4 (2007), 1199–1257 | DOI | MR | Zbl

[9] D. Panyushev, “On the coadjoint representation of $\mathbb Z_2$-contractions of reductive Lie algebras”, Adv. Math., 213 (2007), 380–404 | DOI | MR | Zbl

[10] D. Panyushev, A. Premet, O. Yakimova, “On symmetric invariants of centralisers in reductive Lie algebras”, J. Algebra, 313 (2007), 343–391 | DOI | MR | Zbl

[11] M. Raïs, “L'indice des produits semi-directs $E\times_{\rho}\mathfrak g$”, C. R. Acad. Sci. Paris, Ser. A, 287 (1978), 195–197

[12] R. W. Richardson, “Principal orbit types for algebraic transformation spaces in characteristic zero”, Invent. Math., 16 (1972), 6–14 | DOI | MR | Zbl

[13] G. W. Schwarz, “Representations of simple Lie groups with regular rings of invariants”, Invent. Math., 49 (1978), 167–191 | DOI | MR | Zbl

[14] S. J. Takiff, “Rings of invariant polynomials for a class of Lie algebras”, Trans. AMS, 160 (1971), 249–262 | DOI | MR | Zbl

[15] È. B. Vinberg, “The Weyl group of a graded Lie algebra”, Math. USSR-Izv., 10 (1976), 463–495 | DOI | MR | Zbl

[16] A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, Springer, Berlin, 1990 | MR | MR | Zbl

[17] V. L. Popov, È. B. Vinberg, “Invariant theory”, Algebraic Geometry IV, Encyclopaedia Math. Sci., 55, Springer, Berlin–Heidelberg–New York, 1994, 123–284 | DOI

[18] V. V. Gorbatsevich, A. L. Onishchik, È. B. Vinberg, Lie Groups and Lie Algebras III, Encyclopaedia Math. Sci., 41, Springer, Berlin–Heidelberg–New York, 1994 | MR | Zbl

[19] O. Yakimova, “Symmetric invariants of $\mathbb Z_2$-contractions and other semi-direct products”, Int. Math. Res. Not., 6 (2017), 1674–1716 | MR

[20] O. Yakimova, “Some semi-direct products with free algebras of symmetric invariants”, Perspectives in Lie Theory, Springer INdAM series, 19, 2017 (to appear) , arXiv: 1510.01093v1 [math.RT] | MR | Zbl