An estimate for the average number of common zeros of Laplacian eigenfunctions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 145-154

Voir la notice de l'article provenant de la source Math-Net.Ru

On a compact Riemannian manifold $ M$ of dimension $ n$, we consider $ n$ eigenfunctions of the Laplace operator $ \Delta $ with eigenvalue $ \lambda $. If $ M$ is homogeneous under a compact Lie group preserving the metric then we prove that the average number of common zeros of $ n$ eigenfunctions does not exceed $ c(n)\lambda ^{n/2}{\rm vol}\,M$, the expression known from the celebrated Weyl's law. Moreover, if the isotropy representation is irreducible, then the estimate turns into the equality. The constant $ c(n)$ is explicitly given. The method of proof is based on the application of Crofton's formula for the sphere.
@article{MMO_2017_78_1_a6,
     author = {Dmitri Akhiezer and Boris Kazarnovskii},
     title = {An estimate for the average number of common zeros of {Laplacian} eigenfunctions},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {145--154},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a6/}
}
TY  - JOUR
AU  - Dmitri Akhiezer
AU  - Boris Kazarnovskii
TI  - An estimate for the average number of common zeros of Laplacian eigenfunctions
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 145
EP  - 154
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a6/
LA  - ru
ID  - MMO_2017_78_1_a6
ER  - 
%0 Journal Article
%A Dmitri Akhiezer
%A Boris Kazarnovskii
%T An estimate for the average number of common zeros of Laplacian eigenfunctions
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 145-154
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a6/
%G ru
%F MMO_2017_78_1_a6
Dmitri Akhiezer; Boris Kazarnovskii. An estimate for the average number of common zeros of Laplacian eigenfunctions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 145-154. http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a6/