An estimate for the average number of common zeros of Laplacian eigenfunctions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 145-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a compact Riemannian manifold $ M$ of dimension $ n$, we consider $ n$ eigenfunctions of the Laplace operator $ \Delta $ with eigenvalue $ \lambda $. If $ M$ is homogeneous under a compact Lie group preserving the metric then we prove that the average number of common zeros of $ n$ eigenfunctions does not exceed $ c(n)\lambda ^{n/2}{\rm vol}\,M$, the expression known from the celebrated Weyl's law. Moreover, if the isotropy representation is irreducible, then the estimate turns into the equality. The constant $ c(n)$ is explicitly given. The method of proof is based on the application of Crofton's formula for the sphere.
@article{MMO_2017_78_1_a6,
     author = {Dmitri Akhiezer and Boris Kazarnovskii},
     title = {An estimate for the average number of common zeros of {Laplacian} eigenfunctions},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {145--154},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a6/}
}
TY  - JOUR
AU  - Dmitri Akhiezer
AU  - Boris Kazarnovskii
TI  - An estimate for the average number of common zeros of Laplacian eigenfunctions
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 145
EP  - 154
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a6/
LA  - ru
ID  - MMO_2017_78_1_a6
ER  - 
%0 Journal Article
%A Dmitri Akhiezer
%A Boris Kazarnovskii
%T An estimate for the average number of common zeros of Laplacian eigenfunctions
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 145-154
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a6/
%G ru
%F MMO_2017_78_1_a6
Dmitri Akhiezer; Boris Kazarnovskii. An estimate for the average number of common zeros of Laplacian eigenfunctions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 145-154. http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a6/

[1] Akhiezer D., Kazarnovskii B., “On common zeros of eigenfunctions of the Laplace operator”, Abh. Math. Sem. Univ. Hamburg, 87:1 (2017), 105–111 | DOI | MR | Zbl

[2] Álvarez Paiva J. C., Fernandes E., “Gelfand transforms and Crofton formulas”, Selecta Math., 13:3 (2008), 369–390 | DOI | MR

[3] Arnold V. I., Arnold's Problems, Springer-Verlag, Berlin; PHASIS, M., 2004 | MR | Zbl

[4] Cheng S. Y., “Eigenfunctions and nodal sets”, Comment. Math. Helv., 51:1 (1976), 43–55 | DOI | MR | Zbl

[5] Courant R., Hilbert D., Methods of mathematical physics, v. I, Interscience Publishers, New York, 1953 | MR

[6] Gallot S., Hulin D., Lafontaine J., Riemannian geometry, Third edition, Springer, Berlin, 2004 | MR | Zbl

[7] Gelfand I. M., Smirnov M. M., “Lagrangians satisfying Crofton formulas, Radon transforms, and nonlocal differentials”, Adv. Math., 109:2 (1994), 188–227 | DOI | MR | Zbl

[8] Gichev V. M., “Metric properties in the mean of polynomials on compact isotropy irreducible homogeneous spaces”, Anal. Math. Phys., 3:2 (2013), 119–144 | DOI | MR | Zbl

[9] Howard R., The kinematic formula in Riemannian homogeneous spaces, Mem. AMS, 106, no. 509, 1993 | MR

[10] Ivrii V., “100 years of Weyl's law”, Bull. Math. Sci, 6:3 (2016), 379–452 | DOI | MR | Zbl

[11] Santaló L. A., Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, 1, Addison-Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1976 | MR | Zbl

[12] Takahashi T., “Minimal immersions of Riemannian manifolds”, J. Math. Soc. Japan, 18:4 (1966), 380–385 | DOI | MR | Zbl

[13] Wolf J. A., “The geometry and structure of isotropy irreducible homogeneous spaces”, Acta Math., 120 (1968), 59–148 | DOI | MR | Zbl

[14] Manturov O. V., “Odnorodnye rimanovy mnogoobraziya s neprivodimoi gruppoi vraschenii”, Trudy seminara po vektornomu i tenzornomu analizu, 13, 1966, 68–146