Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2017_78_1_a6, author = {Dmitri Akhiezer and Boris Kazarnovskii}, title = {An estimate for the average number of common zeros of {Laplacian} eigenfunctions}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {145--154}, publisher = {mathdoc}, volume = {78}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a6/} }
TY - JOUR AU - Dmitri Akhiezer AU - Boris Kazarnovskii TI - An estimate for the average number of common zeros of Laplacian eigenfunctions JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2017 SP - 145 EP - 154 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a6/ LA - ru ID - MMO_2017_78_1_a6 ER -
%0 Journal Article %A Dmitri Akhiezer %A Boris Kazarnovskii %T An estimate for the average number of common zeros of Laplacian eigenfunctions %J Trudy Moskovskogo matematičeskogo obŝestva %D 2017 %P 145-154 %V 78 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a6/ %G ru %F MMO_2017_78_1_a6
Dmitri Akhiezer; Boris Kazarnovskii. An estimate for the average number of common zeros of Laplacian eigenfunctions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 145-154. http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a6/
[1] Akhiezer D., Kazarnovskii B., “On common zeros of eigenfunctions of the Laplace operator”, Abh. Math. Sem. Univ. Hamburg, 87:1 (2017), 105–111 | DOI | MR | Zbl
[2] Álvarez Paiva J. C., Fernandes E., “Gelfand transforms and Crofton formulas”, Selecta Math., 13:3 (2008), 369–390 | DOI | MR
[3] Arnold V. I., Arnold's Problems, Springer-Verlag, Berlin; PHASIS, M., 2004 | MR | Zbl
[4] Cheng S. Y., “Eigenfunctions and nodal sets”, Comment. Math. Helv., 51:1 (1976), 43–55 | DOI | MR | Zbl
[5] Courant R., Hilbert D., Methods of mathematical physics, v. I, Interscience Publishers, New York, 1953 | MR
[6] Gallot S., Hulin D., Lafontaine J., Riemannian geometry, Third edition, Springer, Berlin, 2004 | MR | Zbl
[7] Gelfand I. M., Smirnov M. M., “Lagrangians satisfying Crofton formulas, Radon transforms, and nonlocal differentials”, Adv. Math., 109:2 (1994), 188–227 | DOI | MR | Zbl
[8] Gichev V. M., “Metric properties in the mean of polynomials on compact isotropy irreducible homogeneous spaces”, Anal. Math. Phys., 3:2 (2013), 119–144 | DOI | MR | Zbl
[9] Howard R., The kinematic formula in Riemannian homogeneous spaces, Mem. AMS, 106, no. 509, 1993 | MR
[10] Ivrii V., “100 years of Weyl's law”, Bull. Math. Sci, 6:3 (2016), 379–452 | DOI | MR | Zbl
[11] Santaló L. A., Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, 1, Addison-Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1976 | MR | Zbl
[12] Takahashi T., “Minimal immersions of Riemannian manifolds”, J. Math. Soc. Japan, 18:4 (1966), 380–385 | DOI | MR | Zbl
[13] Wolf J. A., “The geometry and structure of isotropy irreducible homogeneous spaces”, Acta Math., 120 (1968), 59–148 | DOI | MR | Zbl
[14] Manturov O. V., “Odnorodnye rimanovy mnogoobraziya s neprivodimoi gruppoi vraschenii”, Trudy seminara po vektornomu i tenzornomu analizu, 13, 1966, 68–146