Matrix divisors on Riemann surfaces and Lax operator algebras
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 129-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

Tyurin parametrization of framed vector bundles is extended to the matrix divisors with an arbitrary semi-simple structure group. The considerations are based on the recently obtained description of Lax operator algebras and finite-dimensional integrable systems in terms of $\mathbb{Z}$-gradings of semi-simple Lie algebras.
@article{MMO_2017_78_1_a5,
     author = {O. K. Sheinman},
     title = {Matrix divisors on {Riemann} surfaces and {Lax} operator algebras},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {129--144},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a5/}
}
TY  - JOUR
AU  - O. K. Sheinman
TI  - Matrix divisors on Riemann surfaces and Lax operator algebras
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 129
EP  - 144
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a5/
LA  - ru
ID  - MMO_2017_78_1_a5
ER  - 
%0 Journal Article
%A O. K. Sheinman
%T Matrix divisors on Riemann surfaces and Lax operator algebras
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 129-144
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a5/
%G ru
%F MMO_2017_78_1_a5
O. K. Sheinman. Matrix divisors on Riemann surfaces and Lax operator algebras. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 129-144. http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a5/

[1] Atiyah M. F., “Vector bundles over an elliptic curve”, Proc. London Math. Soc. (3), 7 (1957), 414–452 | DOI | MR | Zbl

[2] Biswas I., Dhillon A., Hurtubise J., Wentworth R. A., “A symplectic analog of the Quot scheme”, C. R. Math. Acad. Sci. Paris, 353:11 (2015), 995–999 | DOI | MR | Zbl

[3] Grothendieck A., “Sur la classification des fibrés holomorphes sur la sphère de Riemann”, Amer. J. Math., 79 (1957), 121–138 | DOI | MR | Zbl

[4] Faltings G., “Stable $G$-bundles and projective connections”, J. Algebraic Geom., 2 (1993), 507–568 | MR | Zbl

[5] Feigin B. L., “Integriruemye sistemy, shafl-algebry i uravneniya Bete”, Trudy MMO, 77, no. 2, MTsNMO, M., 2016, 251–306

[6] Hitchin N., “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl

[7] Hitchin N., “The self-duality equations on a Riemann surface”, Proc. Lond. Math. Soc. (3), 55:1 (1987), 59–126 | DOI | MR | Zbl

[8] Krichever I. M., Novikov S. P., “Golomorfnye rassloeniya nad rimanovymi poverkhnostyami i uravnenie Kadomtseva — Petviashvili (KP). I”, Funkts. analiz i ego pril., 12:4 (1978), 41–52 | MR | Zbl

[9] Krichever I. M., Novikov S. P., “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6(216) (1980), 47–68 | MR | Zbl

[10] Krichever I. M., “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229 (2002), 229–269, arXiv: Hep-th/0108110 | DOI | MR | Zbl

[11] Krichever I. M., Sheinman O. K., “Algebry operatorov Laksa”, Funkts. analiz i ego pril., 41:4 (2007), 46–59, arXiv: math.RT/0701648 | DOI | MR | Zbl

[12] Levin A., Olshanetsky M., Smirnov A., Zotov A., Characteristic classes and integrable systems. General construction, arXiv: 1006.0702 | MR

[13] Mehta V. B., Seshadri C. S., “Moduli of vector bundles on curves with parabolic structures”, Math. Ann., 248 (1980), 205–239 | DOI | MR | Zbl

[14] Narasimhan M. S., Seshadri C. S., “Stable and unitary vector bundles on a compact Riemann surface”, Ann. Math. (2), 82 (1965), 540–567 | DOI | MR | Zbl

[15] Seshadri C. S., “Moduli of vector bundles on curves with parabolic structures”, Bull. AMS, 83:1 (1977), 124–126 | DOI | MR | Zbl

[16] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975

[17] Sheinman O. K., “Current algebras on Riemann surfaces.”, De Gruyter Exp. in Math., 58, Walter de Gruyter GmbH Co. KG, Berlin, 2012 | MR

[18] Sheinman O. K., “Algebry operatorov Laksa i graduirovki na poluprostykh algebrakh Li”, Doklady RAN, 461:2 (2015), 143–145 | DOI | Zbl

[19] Sheinman O. K., “Lax operator algebras and gradings on semi-simple Lie algebras”, Transform. Groups, 21:1 (2016), 181–196 | DOI | MR | Zbl

[20] Sheinman O. K., “Ierarkhii konechnomernykh uravnenii Laksa so spektralnym parametrom na rimanovoi poverkhnosti i poluprostye algebry Li”, TMF, 185:3 (2015), 527–544 | DOI | MR | Zbl

[21] Sheinman O. K., “Poluprostye algebry Li i gamiltonova teoriya konechnomernykh uravnenii Laksa so spektralnym parametrom na rimanovoi poverkhnosti”, Sovrem. probl. matem., mekh. i matem. fiziki, Trudy MIAN, 290, MAIK, M., 2015, 191–201

[22] Sheinman O. K., “Global current algebras and localization on Riemann surfaces”, Moscow Math. J., 15:4 (2015), 833–846 | MR | Zbl

[23] Sheinman O. K., “Algebry operatorov Laksa i integriruemye sistemy”, UMN, 71:1(427) (2016), 117–168, arXiv: 1602.04320 | DOI | MR | Zbl

[24] Tyurin A. N., “O klassifikatsii dvumernykh vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 28:1 (1964), 21–52 | Zbl

[25] Tyurin A. N., “Klassifikatsiya vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 29:3 (1965), 657–688 | Zbl

[26] Tyurin A. N., “O klassifikatsii $n$–mernykh vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 30:6 (1966), 1353–1366

[27] Tyurin A. N., “Geometriya modulei vektornykh rassloenii”, UMN, 29:6(180) (1974), 59–88 | MR | Zbl

[28] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., “Stroenie grupp i algebr Li”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 41, VINITI, M., 1990, 5–253

[29] Weil A., “Généralisation des fonctions abéliennes”, J. Math. Pures Appl., 17 (1938), 47–87