Matrix divisors on Riemann surfaces and Lax operator algebras
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 129-144
Voir la notice de l'article provenant de la source Math-Net.Ru
Tyurin parametrization of framed vector bundles is extended to the matrix divisors with an arbitrary semi-simple structure group. The considerations are based on the recently obtained description of Lax operator algebras and finite-dimensional integrable systems in terms of $\mathbb{Z}$-gradings of semi-simple Lie algebras.
@article{MMO_2017_78_1_a5,
author = {O. K. Sheinman},
title = {Matrix divisors on {Riemann} surfaces and {Lax} operator algebras},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {129--144},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a5/}
}
O. K. Sheinman. Matrix divisors on Riemann surfaces and Lax operator algebras. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 129-144. http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a5/