Algebraic group actions on normal varieties
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 101-128

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a connected algebraic $k$-group acting on a normal $k$-variety, where $k$ is a field. We show that $X$ is covered by open $G$-stable quasi-projective subvarieties; moreover, any such subvariety admits an equivariant embedding into the projectivization of a $G$–linearized vector bundle on an abelian variety, quotient of $G$. This generalizes a classical result of Sumihiro for actions of smooth connected affine algebraic groups.
@article{MMO_2017_78_1_a4,
     author = {M. Brion},
     title = {Algebraic group actions on normal varieties},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {101--128},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a4/}
}
TY  - JOUR
AU  - M. Brion
TI  - Algebraic group actions on normal varieties
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 101
EP  - 128
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a4/
LA  - en
ID  - MMO_2017_78_1_a4
ER  - 
%0 Journal Article
%A M. Brion
%T Algebraic group actions on normal varieties
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 101-128
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a4/
%G en
%F MMO_2017_78_1_a4
M. Brion. Algebraic group actions on normal varieties. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 101-128. http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a4/