Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2017_78_1_a4, author = {M. Brion}, title = {Algebraic group actions on normal varieties}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {101--128}, publisher = {mathdoc}, volume = {78}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a4/} }
M. Brion. Algebraic group actions on normal varieties. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 101-128. http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a4/
[1] K. Altmann, J. Hausen, H. Süss, “Gluing affine torus actions via divisorial fans”, Transform. Groups, 13:2 (2008), 215–242 | DOI | MR | Zbl
[2] O. Benoist, “Quasi-projectivity of normal varieties”, Int. Math. Res. Not., 17 (2013), 3878–3885 | DOI | MR | Zbl
[3] A. Białynicki-Birula, “On induced actions of algebraic groups”, Ann. Inst. Fourier, 43:2 (1993), 365–368 | DOI | MR | Zbl
[4] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, Ergeb. Math. Grenzgeb. (3), 21, Springer-Verlag, Berlin, 1990 | MR
[5] M. Brion, “Some basic results on actions of nonaffine algebraic groups”, Symmetry and spaces, Progr. Math., 278, Birkhäuser Boston, Inc., Boston, MA, 2010, 1–20 | MR | Zbl
[6] M. Brion, On actions of connected algebraic groups, 2014, arXiv: 1412.1906
[7] M. Brion, “On linearization of line bundles”, J. Math. Sci. Univ. Tokyo, 22 (2015), 113–147 | MR | Zbl
[8] M. Brion, “Some structure theorems for algebraic groups”, Proc. Symp. Pure Math., 94, AMS, Providence, RI, 2017, 53–125 | DOI | MR
[9] D. Cox, J. Little, H. Schenck, Toric varieties, Grad. Stud. Math., 124, AMS, Providence, RI, 2011 | DOI | MR | Zbl
[10] B. Conrad, “A modern proof of Chevalley's theorem on algebraic groups”, J. Ramanujan Math. Soc., 17:1 (2002), 1–18 | MR | Zbl
[11] B. Conrad, O. Gabber, G. Prasad, Pseudo-reductive groups, New Math. Monogr., 17, 2nd ed., Cambridge Univ. Press, Cambridge, 2015 | MR
[12] M. Demazure, P. Gabriel, Groupes algébriques, Masson, Paris, 1970 | MR | Zbl
[13] A. Grothendieck, “Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes”, Publ. Math. IHÉS, 8 (1961) (rédigés avec la collaboration de J. Dieudonné) ; “III. Étude cohomologique des faisceaux cohérents”, Publ. Math. IHÉS, 17 (1963) ; “IV. Étude locale des schémas et des morphismes de schémas”, Publ. Math. IHÉS, 32 (1967) | MR | Zbl | Zbl
[14] H. Hironaka, “An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures”, Ann. of Math. (2), 75 (1962), 190–208 | DOI | MR | Zbl
[15] J. Kollár, Lectures on resolution of singularities, Ann. of Math. Studies, 166, Princeton Univ. Press, Princeton, 2007 | MR | Zbl
[16] S. L. Kleiman, “The Picard scheme”, Fundamental algebraic geometry, Math. Surv. Monogr., 123, AMS, Providence, RI, 2005, 235–321 | MR
[17] K. Langlois, “Polyhedral divisors and torus actions of complexity one over arbitrary fields”, J. Pure Appl. Algebra, 219:6 (2015), 2015–2045 | DOI | MR | Zbl
[18] A. Liendo, H. Süss, “Normal singularities with torus action”, Tohoku Math. J. (2), 65:1 (2013), 105–130 | DOI | MR | Zbl
[19] J. Milne, A proof of the Barsotti–Chevalley theorem on algebraic groups, 2013, arXiv: 1311.6060v2
[20] M. Miyanishi, “Some remarks on algebraic homogeneous vector bundles”, Number theory, algebraic geometry and commutative algebra: in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, 71–93 | MR
[21] S. Mukai, “Semi-homogeneous vector bundles on an abelian variety”, J. Math. Kyoto Univ., 18 (1978), 239–272 | DOI | MR | Zbl
[22] D. Mumford, Abelian varieties, Oxford Univ. Press, London, 1970 | MR | Zbl
[23] D. Mumford, J. Fogarty, F. Kirwan, “Geometric invariant theory”, Ergeb. Math. Grenzgeb. (2), 34, Springer-Verlag, Berlin, 1994 | MR
[24] J. P. Murre, “On contravariant functors from the category of preschemes over a field into the category of abelian groups”, Publ. Math. IHÉS, 23 (1964), 5–43 | DOI | MR
[25] M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Math., 119, Springer-Verlag, New York, 1970 | MR
[26] J.-P. Serre, “Morphismes universels et variétés d'Albanese”, Exposés de séminaires (1950–1999), Doc. Math., 1, Soc. Math. France, Paris, 2001, 141–160 | MR
[27] Revêtements étales et groupe fondamental, Séminaire de géométrie algébrique du Bois Marie 1960–1961 (SGA 1), Doc. Math., 3, Soc. Math. France, Paris, 2003
[28] Schémas en groupes, Séminaire de géométrie algébrique du Bois Marie 1962–1964 (SGA 3), v. I, Doc. Math., 7, Soc. Math. France, Paris, 2011
[29] Cohomologie $l$-adique et fonctions $L$, Séminaire de géométrie algébrique du Bois Marie 1965–1966 (SGA 5), Lecture Notes Math., 589, Springer-Verlag, Berlin — New York, 1977 | MR
[30] H. Sumihiro, “Equivariant completion”, J. Math. Kyoto Univ., 14:1 (1974), 1–28 | DOI | MR | Zbl
[31] H. Sumihiro, “Equivariant completion. II”, J. Math. Kyoto Univ., 15:3 (1975), 573–605 | DOI | MR | Zbl
[32] B. Totaro, “Pseudo-abelian varieties”, Ann. Sci. École Norm. Sup., 46:5 (2013), 693–721 | DOI | MR | Zbl
[33] A. Weil, “On algebraic groups of transformations”, Amer. J. Math., 77 (1955), 355–391 | DOI | MR | Zbl
[34] O. Wittenberg, “On Albanese torsors and the elementary obstruction”, Math. Ann., 340:4 (2008), 805–838 | DOI | MR | Zbl
[35] J. Włodarczyk, “Maximal quasiprojective subsets and the Kleiman–Chevalley quasi-projectivity criterion”, J. Math. Sci. Univ. Tokyo, 6 (1999), 41–47 | MR