Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac--Moody algebras
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 89-100
Voir la notice de l'article provenant de la source Math-Net.Ru
Using our results about Lorentzian Kac–Moody algebras and arithmetic mirror symmetry, we give six series of examples of lattice-polarized $K3$ surfaces with automorphic discriminant.
@article{MMO_2017_78_1_a3,
author = {Valery Gritsenko and Viacheslav V. Nikulin},
title = {Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and {Lorentzian} {Kac--Moody} algebras},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {89--100},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a3/}
}
TY - JOUR AU - Valery Gritsenko AU - Viacheslav V. Nikulin TI - Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac--Moody algebras JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2017 SP - 89 EP - 100 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a3/ LA - ru ID - MMO_2017_78_1_a3 ER -
%0 Journal Article %A Valery Gritsenko %A Viacheslav V. Nikulin %T Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac--Moody algebras %J Trudy Moskovskogo matematičeskogo obŝestva %D 2017 %P 89-100 %V 78 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a3/ %G ru %F MMO_2017_78_1_a3
Valery Gritsenko; Viacheslav V. Nikulin. Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac--Moody algebras. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 89-100. http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a3/