Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac--Moody algebras
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 89-100

Voir la notice de l'article provenant de la source Math-Net.Ru

Using our results about Lorentzian Kac–Moody algebras and arithmetic mirror symmetry, we give six series of examples of lattice-polarized $K3$ surfaces with automorphic discriminant.
@article{MMO_2017_78_1_a3,
     author = {Valery Gritsenko and Viacheslav V. Nikulin},
     title = {Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and {Lorentzian} {Kac--Moody} algebras},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a3/}
}
TY  - JOUR
AU  - Valery Gritsenko
AU  - Viacheslav V. Nikulin
TI  - Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac--Moody algebras
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 89
EP  - 100
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a3/
LA  - ru
ID  - MMO_2017_78_1_a3
ER  - 
%0 Journal Article
%A Valery Gritsenko
%A Viacheslav V. Nikulin
%T Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac--Moody algebras
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 89-100
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a3/
%G ru
%F MMO_2017_78_1_a3
Valery Gritsenko; Viacheslav V. Nikulin. Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac--Moody algebras. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 89-100. http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a3/