Representations of superconformal algebras and mock theta functions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 17-88

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the normalized characters of integrable highest weight modules of given level over an affine Lie algebra $\hat{\mathfrak{g}}$ span an $\mathrm{SL}_2(\mathbb{Z})$–invariant space. This result extends to admissible $\hat{\mathfrak{g}}$–modules, where $\mathfrak{g}$ is a simple Lie algebra or $\mathrm{osp}_{1|n}$. Applying the quantum Hamiltonian reduction (QHR) to admissible $\hat{\mathfrak{g}}$–modules when $\mathfrak{g} =s\ell_2$ (resp. $=\mathrm{osp}_{1|2}$) one obtains minimal series modules over the Virasoro (resp. $N=1$ superconformal algebras), which form modular invariant families. Another instance of modular invariance occurs for boundary level admissible modules, including when $\mathfrak{g}$ is a basic Lie superalgebra. For example, if $\mathfrak{g}=s\ell_{2|1}$ (resp. $=\mathrm{osp}_{3|2}$), we thus obtain modular invariant families of $\hat{\mathfrak{g}}$–modules, whose QHR produces the minimal series modules for the $N=2$ superconformal algebras (resp. a modular invariant family of $N=3$ superconformal algebra modules). However, in the case when $\mathfrak{g}$ is a basic Lie superalgebra different from a simple Lie algebra or $\mathrm{osp}_{1|n}$, modular invariance of normalized supercharacters of admissible $\hat{\mathfrak{g}}$–modules holds outside of boundary levels only after their modification in the spirit of Zwegers' modification of mock theta functions. Applying the QHR, we obtain families of representations of $N=2,3,4$ and big $N=4$ superconformal algebras, whose modified (super)characters span an $\mathrm{SL}_2(\mathbb{Z})$–invariant space.
@article{MMO_2017_78_1_a2,
     author = {V. G. Kac and M. Wakimoto},
     title = {Representations of superconformal algebras and mock theta functions},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {17--88},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a2/}
}
TY  - JOUR
AU  - V. G. Kac
AU  - M. Wakimoto
TI  - Representations of superconformal algebras and mock theta functions
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 17
EP  - 88
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a2/
LA  - en
ID  - MMO_2017_78_1_a2
ER  - 
%0 Journal Article
%A V. G. Kac
%A M. Wakimoto
%T Representations of superconformal algebras and mock theta functions
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 17-88
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a2/
%G en
%F MMO_2017_78_1_a2
V. G. Kac; M. Wakimoto. Representations of superconformal algebras and mock theta functions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 17-88. http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a2/