Representations of superconformal algebras and mock theta functions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 17-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the normalized characters of integrable highest weight modules of given level over an affine Lie algebra $\hat{\mathfrak{g}}$ span an $\mathrm{SL}_2(\mathbb{Z})$–invariant space. This result extends to admissible $\hat{\mathfrak{g}}$–modules, where $\mathfrak{g}$ is a simple Lie algebra or $\mathrm{osp}_{1|n}$. Applying the quantum Hamiltonian reduction (QHR) to admissible $\hat{\mathfrak{g}}$–modules when $\mathfrak{g} =s\ell_2$ (resp. $=\mathrm{osp}_{1|2}$) one obtains minimal series modules over the Virasoro (resp. $N=1$ superconformal algebras), which form modular invariant families. Another instance of modular invariance occurs for boundary level admissible modules, including when $\mathfrak{g}$ is a basic Lie superalgebra. For example, if $\mathfrak{g}=s\ell_{2|1}$ (resp. $=\mathrm{osp}_{3|2}$), we thus obtain modular invariant families of $\hat{\mathfrak{g}}$–modules, whose QHR produces the minimal series modules for the $N=2$ superconformal algebras (resp. a modular invariant family of $N=3$ superconformal algebra modules). However, in the case when $\mathfrak{g}$ is a basic Lie superalgebra different from a simple Lie algebra or $\mathrm{osp}_{1|n}$, modular invariance of normalized supercharacters of admissible $\hat{\mathfrak{g}}$–modules holds outside of boundary levels only after their modification in the spirit of Zwegers' modification of mock theta functions. Applying the QHR, we obtain families of representations of $N=2,3,4$ and big $N=4$ superconformal algebras, whose modified (super)characters span an $\mathrm{SL}_2(\mathbb{Z})$–invariant space.
@article{MMO_2017_78_1_a2,
     author = {V. G. Kac and M. Wakimoto},
     title = {Representations of superconformal algebras and mock theta functions},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {17--88},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a2/}
}
TY  - JOUR
AU  - V. G. Kac
AU  - M. Wakimoto
TI  - Representations of superconformal algebras and mock theta functions
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2017
SP  - 17
EP  - 88
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a2/
LA  - en
ID  - MMO_2017_78_1_a2
ER  - 
%0 Journal Article
%A V. G. Kac
%A M. Wakimoto
%T Representations of superconformal algebras and mock theta functions
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2017
%P 17-88
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a2/
%G en
%F MMO_2017_78_1_a2
V. G. Kac; M. Wakimoto. Representations of superconformal algebras and mock theta functions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 17-88. http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a2/

[1] D. Adamović, V. G. Kac, P. Möseneder Frajria, P. Papi, O. Perse, “Conformal embeddings of affine vertex algebras in minimal $W$-algebras I. Structural results”, J. Algebra, 2017, arXiv: 1602.04687 | MR

[2] P. Appell, “Sur les fonctions doublement périodique de troisième espèce”, Annals Sci. École Norm. Sup. (3), 1 (1884), 135–164 ; 2 (1885), 9–36 ; 3 (1886), 9–42 | DOI | MR | DOI | Zbl | DOI | Zbl

[3] T. Arakawa, “Representation theory of superconformal algebras and the Kac–Roan–Wakimoto conjecture”, Duke Math. J., 130 (2005), 435–478 | DOI | MR | Zbl

[4] B. L. Feigin, E. Frenkel, “Quantization of Drinfeld–Sokolov reduction”, Phys. Lett. B, 246 (1990), 75–81 | DOI | MR | Zbl

[5] E. Frenkel, V. G. Kac, M. Wakimoto, “Characters and fusion rules for W-algebras via quantized Drinfel'd–Sokolov reduction”, Comm. Math. Phys., 147 (1992), 295–328 | DOI | MR | Zbl

[6] M. Gorelik, V. G. Kac, “Characters of (relatively) integrable modules over affine Lie superalgebras”, Jpn. J. Math., 10:2 (2015), 135–235 | DOI | MR | Zbl

[7] P. Goddard, A. Schwimmer, “Factoring out free fermions and superconformal algebras”, Phys. Lett. B, 214:2 (1988), 209–214 | DOI | MR

[8] V. G. Kac, “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR | Zbl

[9] V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[10] V. G. Kac, D. H. Peterson, “Infinite-dimensional Lie algebras, theta functions and modular forms”, Adv. Math., 53 (1984), 125–264 | DOI | MR | Zbl

[11] V. G. Kac, S.-S. Roan, M. Wakimoto, “Quantum reduction of affine superalgebras”, Comm. Math. Phys., 241 (2003), 307–342 | DOI | MR | Zbl

[12] V. G. Kac, M. Wakimoto, “Modular invariant representations of infinite-dimensional Lie algebras and superalgebras”, Proc. Nat. Acad. Sci. U.S.A., 85 (1988), 4956–4960 | DOI | MR | Zbl

[13] V. G. Kac, M. Wakimoto, “Classification of modular invariant representations of affine algebras”, Infinite-dimensional Lie algebras and groups (Luminy–Marseille, 1988), Adv. Ser. Math. Phys., 7, World Sci. Publ., Teaneck, NJ, 1989, 138–177 | MR

[14] V. G. Kac, M. Wakimoto, “Integrable highest weight modules over affine superalgebras and number theory”, Lie theory and geometry, Progr. Math., 123, Birkhäuser, Boston, MA, 1994, 415–456 | MR | Zbl

[15] V.G. Kac, M. Wakimoto, “Integrable highest weight modules over affine superalgebras and Appell's function”, Comm. Math. Phys., 215 (2001), 631–682 | DOI | MR | Zbl

[16] V. G. Kac, M. Wakimoto, “Quantum reduction and representation theory of superconformal algebras”, Adv. Math., 185 (2004), 400–458 ; Corrigendum, Adv. Math., 2005, 453–455 | DOI | MR | Zbl | DOI

[17] V. G. Kac, M. Wakimoto, “Quantum reduction in the twisted case”, Infinite dimensional algebras and quantum integrable systems, Progr. Math., 237, Birkhäuser, Basel, 2005, 85–126 | MR

[18] V. G. Kac, M. Wakimoto, “Representations of affine superalgebras and mock theta functions”, Transform. Groups, 19:2 (2014), 383–455 | DOI | MR | Zbl

[19] V. G. Kac, M. Wakimoto, “Representations of affine superalgebras and mock theta functions. II”, Adv. Math., 300 (2016), 17–70 | DOI | MR | Zbl

[20] V. G. Kac, M. Wakimoto, “Representations of affine superalgebras and mock theta functions. III”, Izv. Math., 80:4 (2016), 693–750 | DOI | MR | Zbl

[21] V. G. Kac, M. Wakimoto, “A characterization of modified mock theta functions”, Transform. Groups, 22 (2017), arXiv: 1510.05683 | DOI | MR

[22] D. Mumford, Tata lectures on theta I, Progr. Math., 28, Birkhäuser, Boston, MA, 1983 | DOI | MR | Zbl

[23] F. Ravanini, S.-K. Yang, “Modular invariance in $N=2$ superconformal field theories”, Phys. Lett. B., 195 (1987), 202–208 | DOI | MR

[24] D. Zagier, “Ramanujan's mock theta functions and their applications (after Zwegers and Ono–Bringmann)”, Astérisque, 326 (2009), 143–164 ; Séminaire Bourbaki, 2007–2008, 2010 | MR | Zbl | Zbl

[25] S. P. Zwegers, Mock theta functions, arXiv: 0807.4834