Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2017_78_1_a2, author = {V. G. Kac and M. Wakimoto}, title = {Representations of superconformal algebras and mock theta functions}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {17--88}, publisher = {mathdoc}, volume = {78}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a2/} }
TY - JOUR AU - V. G. Kac AU - M. Wakimoto TI - Representations of superconformal algebras and mock theta functions JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2017 SP - 17 EP - 88 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a2/ LA - en ID - MMO_2017_78_1_a2 ER -
V. G. Kac; M. Wakimoto. Representations of superconformal algebras and mock theta functions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 78 (2017) no. 1, pp. 17-88. http://geodesic.mathdoc.fr/item/MMO_2017_78_1_a2/
[1] D. Adamović, V. G. Kac, P. Möseneder Frajria, P. Papi, O. Perse, “Conformal embeddings of affine vertex algebras in minimal $W$-algebras I. Structural results”, J. Algebra, 2017, arXiv: 1602.04687 | MR
[2] P. Appell, “Sur les fonctions doublement périodique de troisième espèce”, Annals Sci. École Norm. Sup. (3), 1 (1884), 135–164 ; 2 (1885), 9–36 ; 3 (1886), 9–42 | DOI | MR | DOI | Zbl | DOI | Zbl
[3] T. Arakawa, “Representation theory of superconformal algebras and the Kac–Roan–Wakimoto conjecture”, Duke Math. J., 130 (2005), 435–478 | DOI | MR | Zbl
[4] B. L. Feigin, E. Frenkel, “Quantization of Drinfeld–Sokolov reduction”, Phys. Lett. B, 246 (1990), 75–81 | DOI | MR | Zbl
[5] E. Frenkel, V. G. Kac, M. Wakimoto, “Characters and fusion rules for W-algebras via quantized Drinfel'd–Sokolov reduction”, Comm. Math. Phys., 147 (1992), 295–328 | DOI | MR | Zbl
[6] M. Gorelik, V. G. Kac, “Characters of (relatively) integrable modules over affine Lie superalgebras”, Jpn. J. Math., 10:2 (2015), 135–235 | DOI | MR | Zbl
[7] P. Goddard, A. Schwimmer, “Factoring out free fermions and superconformal algebras”, Phys. Lett. B, 214:2 (1988), 209–214 | DOI | MR
[8] V. G. Kac, “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR | Zbl
[9] V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[10] V. G. Kac, D. H. Peterson, “Infinite-dimensional Lie algebras, theta functions and modular forms”, Adv. Math., 53 (1984), 125–264 | DOI | MR | Zbl
[11] V. G. Kac, S.-S. Roan, M. Wakimoto, “Quantum reduction of affine superalgebras”, Comm. Math. Phys., 241 (2003), 307–342 | DOI | MR | Zbl
[12] V. G. Kac, M. Wakimoto, “Modular invariant representations of infinite-dimensional Lie algebras and superalgebras”, Proc. Nat. Acad. Sci. U.S.A., 85 (1988), 4956–4960 | DOI | MR | Zbl
[13] V. G. Kac, M. Wakimoto, “Classification of modular invariant representations of affine algebras”, Infinite-dimensional Lie algebras and groups (Luminy–Marseille, 1988), Adv. Ser. Math. Phys., 7, World Sci. Publ., Teaneck, NJ, 1989, 138–177 | MR
[14] V. G. Kac, M. Wakimoto, “Integrable highest weight modules over affine superalgebras and number theory”, Lie theory and geometry, Progr. Math., 123, Birkhäuser, Boston, MA, 1994, 415–456 | MR | Zbl
[15] V.G. Kac, M. Wakimoto, “Integrable highest weight modules over affine superalgebras and Appell's function”, Comm. Math. Phys., 215 (2001), 631–682 | DOI | MR | Zbl
[16] V. G. Kac, M. Wakimoto, “Quantum reduction and representation theory of superconformal algebras”, Adv. Math., 185 (2004), 400–458 ; Corrigendum, Adv. Math., 2005, 453–455 | DOI | MR | Zbl | DOI
[17] V. G. Kac, M. Wakimoto, “Quantum reduction in the twisted case”, Infinite dimensional algebras and quantum integrable systems, Progr. Math., 237, Birkhäuser, Basel, 2005, 85–126 | MR
[18] V. G. Kac, M. Wakimoto, “Representations of affine superalgebras and mock theta functions”, Transform. Groups, 19:2 (2014), 383–455 | DOI | MR | Zbl
[19] V. G. Kac, M. Wakimoto, “Representations of affine superalgebras and mock theta functions. II”, Adv. Math., 300 (2016), 17–70 | DOI | MR | Zbl
[20] V. G. Kac, M. Wakimoto, “Representations of affine superalgebras and mock theta functions. III”, Izv. Math., 80:4 (2016), 693–750 | DOI | MR | Zbl
[21] V. G. Kac, M. Wakimoto, “A characterization of modified mock theta functions”, Transform. Groups, 22 (2017), arXiv: 1510.05683 | DOI | MR
[22] D. Mumford, Tata lectures on theta I, Progr. Math., 28, Birkhäuser, Boston, MA, 1983 | DOI | MR | Zbl
[23] F. Ravanini, S.-K. Yang, “Modular invariance in $N=2$ superconformal field theories”, Phys. Lett. B., 195 (1987), 202–208 | DOI | MR
[24] D. Zagier, “Ramanujan's mock theta functions and their applications (after Zwegers and Ono–Bringmann)”, Astérisque, 326 (2009), 143–164 ; Séminaire Bourbaki, 2007–2008, 2010 | MR | Zbl | Zbl
[25] S. P. Zwegers, Mock theta functions, arXiv: 0807.4834