Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2016_77_2_a3, author = {B. L. Feigin}, title = {Integrable systems, shuffle algebras, and {Bethe} equations}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {251--306}, publisher = {mathdoc}, volume = {77}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2016_77_2_a3/} }
B. L. Feigin. Integrable systems, shuffle algebras, and Bethe equations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 2, pp. 251-306. http://geodesic.mathdoc.fr/item/MMO_2016_77_2_a3/
[1] Gelfand I. M., Dikii L. A., “Asimptotika rezolventy shturm–liuvillevskikh uravnenii i algebra uravnenii Kortevega–de Friza”, UMN, 30:5(185) (1975), 67–100 | Zbl
[2] Drinfeld V. G., “Kvantovye gruppy”, Differentsialnaya geometriya, gruppy Li i mekhanika. VIII, Zap. nauchn. sem. LOMI, 155, 1986, 18–49 | Zbl
[3] Drinfeld V. G., “O pochti kokommutativnykh algebrakh Khopfa”, Algebra i analiz, 1:2 (1989), 30–46
[4] Drinfeld V. G., “Novaya realizatsiya yangianov i kvantovannykh affinnykh algebr”, DAN SSSR, 36 (1988), 212–216 | Zbl
[5] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | Zbl
[6] Dzhimbo M., Miva T., Algebraicheskii analiz tochno reshaemykh reshetochnykh modelei, RKhD, Izhevsk, 2000
[7] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980
[8] Kirillov A. A., “Orbity gruppy diffeomorfizmov okruzhnosti i lokalnye superalgebry Li”, Funkts. analiz i ego pril., 15:2 (1981), 75–76 | Zbl
[9] Lukyanov S. L., Fateev V. A., “Konformno–invariantnye modeli dvumernoi kvantovoi teorii polya s simmetriei $Z_N$”, ZhETF, 94:3 (1988), 23–37
[10] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$–mernogo tverdogo tela”, Funkts. analiz i ego pril., 10:4 (1976), 93–94
[11] Mischenko A. S., Fomenko A. T., “Integriruemost uravnenii Eilera na poluprostykh algebrakh Li”, Tr. sem. po vektornomu i tenzornomu analizu, 19, 1979, 3–94 | Zbl
[12] Rybnikov L. G., “Metod sdviga invariantov i model Godena”, Funkts. analiz i ego pril., 40:3 (2006), 30–43, arXiv: hep-th/9412229 | DOI | Zbl
[13] Perelomov A. M., Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990
[14] Reiman A., Semenov–Tyan–Shanskii M., Integriruemye sistemy, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003
[15] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220
[16] Talalaev D. V., “Kvantovaya sistema Godena”, Funkts. analiz i ego pril., 40:1 (2006), 86–91 | DOI | Zbl
[17] Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5(209) (1979), 13–63
[18] Feigin B. L., “Polubeskonechnye gomologii algebr Li, Katsa–Mudi i Virasoro”, UMN, 39:2(236) (1984), 195–196
[19] Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe Ansatz”, Comm. Math. Phys., 177:2 (1996), 381–398 | DOI | MR | Zbl
[20] Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory. II. Q-operator and DDV equation”, Commun. Math. Phys., 190:2 (1997), 247–278, arXiv: hep-th/9604044 | DOI | MR | Zbl
[21] Beilinson A., Drinfeld V., Quantization of Hitchin's integrable system and Hecke eigensheaves, http://www.math.uchicago.edu/m̃itya/langlands/QuantizationHitchin.pdf
[22] Belavin A., Polyakov A., Schwarz A., Tyupkin Y., “Pseuvdoparticle solutions of the Yang–Mills equations”, Phys. Lett., B59 (1975), 85–87 | DOI | MR
[23] Belavin A., Polyakov A., Zamolodchikov A., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys., B241 (1984), 333 | DOI | MR | Zbl
[24] Buryak A., Rossi P., “Double ramification cycles and quantum integrable systems”, Lett. Math. Phys., 106:3 (2016), 289–317, arXiv: 1503.03687 | DOI | MR | Zbl
[25] Ding J., Iohara K., “Generalization of Drinfeld quantum affine algebras”, Lett. Math. Phys., 41 (1997), 181–193 | DOI | MR | Zbl
[26] Etingof P., Whittaker functions on quantum groups and $q$-deformed Toda operators, arXiv: math/9901053 | MR
[27] Etingof P., Kazhdan D., “Quantization of Lie bialgebras, I”, Selecta Math., 2:1 (1996), 1–41 | DOI | MR | Zbl
[28] Feigin B., Frenkel E., “Quantization of the Drinfeld–Sokolov reduction”, Phys. Lett. Ser. B, 246:1–2 (1990), 75–81 | DOI | MR | Zbl
[29] Feigin B., Frenkel E., “Duality in $W$-algebras”, Int. Math. Res. Notices, 6 (1991), 75–82 | DOI | MR | Zbl
[30] Feigin B., Frenkel E., “Free field resolutions in affine Toda field theories”, Phys. Lett. Ser. B, 276:1–2 (1992), 79–86 | DOI | MR
[31] Feigin B., Frenkel E., “Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras”, Int. J. Mod. Phys. Ser. A, 7, Suppl. 1A (1992), 197–215 | DOI | MR | Zbl
[32] Feigin B., Frenkel E., “Integrals of motion and quantum groups”, Lecture Notes, 1620 (1995), 349–418 | MR
[33] Feigin B., Frenkel E., “Quantum $W$-algebras and elliptic algebras”, Comm. Math. Phys., 178:3 (1996), 653–677, arXiv: q-alg/9508009 | DOI | MR
[34] Feigin B., Frenkel E., “Quantization of soliton systems and Langlands duality”, Adv. Stud. Pure Math., 61, Math. Soc., Tokyo, 2011, 185–274, arXiv: 0705.2486 | MR | Zbl
[35] Feigin B., Jimbo M., Miwa T., Mukhin E., “Representations of quantum toroidal $\mathfrak{gl}_n$”, J. Algebra, 380 (2013), 78–108, arXiv: 1204.5378 | DOI | MR | Zbl
[36] Feigin B., Jimbo M., Miwa T., Mukhin E., “Quantum toroidal $\mathfrak{gl}_1$ and Bethe ansatz”, J. Phys. Ser. A, 48:24 (2015), 244001, arXiv: 1502.07194 | DOI | MR | Zbl
[37] Feigin B., Jimbo M., Miwa T., Mukhin E., Finite type modules and Bethe ansatz for quantum toroidal $\mathfrak{gl}(1)$, arXiv: 1603.02765 | MR
[38] Feigin B., Hashizume K., Hoshino A., Shiraishi J., Yanagida S., “A commutative algebra on degenerate $\mathbb{CP}^1$ and Macdonald polynomials”, J. Math. Phys., 50 (2009), 095215, arXiv: 0904.2291 | DOI | MR | Zbl
[39] Feigin B., Hoshino A., Shibahara J., Shiraishi J., Yanagida S., “Kernel function and quantum algebras”, RIMS kokyuroku, 1689 (2010), 133–152, arXiv: 1002.2485
[40] Feigin B. L., Odesskii A. V., “Quantized moduli spaces of the bundles on the elliptic curve and their applications”, NATO Sci. Ser. II: Math. Phys. Chem., 35 (2001), 123–137, arXiv: math/9812059 [math.QA] | MR | Zbl
[41] Feigin B., Tsymbaliuk A., “Bethe subalgebras of quantum affine $\mathfrak{gl}(n)$ via shuffle algebras”, Selecta Math., 22:2 (2016), 979–101, arXiv: 1504.01696 | DOI | MR
[42] Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, Math. Surv. and Monog., 88, AMS, Providence, RI, 2004 | DOI | MR | Zbl
[43] Frenkel E., Reshetikhin N., “Quantum affine algebras and deformations of the Virasoro and $W$–algebras”, Comm. Math. Phys., 178:1 (1996), 237–264, arXiv: q-alg/9505025 | DOI | MR | Zbl
[44] Frenkel E., Reshetikhin N., “Deformations of $W$-algebras associated to simple Lie algebras”, Comm. Math. Phys., 197:1 (1998), 1–32, arXiv: q-alg/9708006 | MR | Zbl
[45] Frenkel E., Reshetikhin N., “The $q$-characters of representations of quantum affine algebras and deformations of $W$-algebras”, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math., 248, AMS, Providence, RI, 1999, 163–205, arXiv: math/9810055 [math.QA] | DOI | MR | Zbl
[46] Jimbo M., “A $q$-difference analogue of $U(\mathfrak{g})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10:1 (1985), 63–69 | DOI | MR | Zbl
[47] Khesin B., Zakharevich I., “Poisson–Lie group of pseudodifferential symbols”, Comm. Math. Phys., 171:3 (1995), 475–530, arXiv: hep-th/9312088 | DOI | MR | Zbl
[48] Litvinov A. V., “On spectrum of ILW hierarchy in conformal field theory”, J. High Energy Phys., 2013, no. 11, 155, arXiv: 1307.8094 | DOI | MR | Zbl
[49] Maulik D., Okounkov A., Quantum groups and quantum cohomology, arXiv: 1211.1287
[50] Miki K., “A $(q,\gamma)$ analog of the $W_{1+\infty}$ algebra”, J. Math. Phys., 48:12 (2007), 3520 | DOI | MR
[51] Mukhin E., Tarasov V., Varchenko A., “Bethe algebra of homogeneous XXX Heisenberg model has simple spectrum”, Comm. Math. Phys., 288:1 (2009), 1–42, arXiv: 0706.0688 | DOI | MR | Zbl
[52] Mukhin E., Tarasov V., Varchenko A., “On separation of variables and completeness of the Bethe ansatz for quantum $\mathfrak{gl}_N$ Gaudin model”, Glasgow Math. J., 51A (2009), 137–145, arXiv: 0712.0981 | DOI | MR | Zbl
[53] Nekrasov N. A., Shatashvili S. L., “Supersymmetric vacua and Bethe ansatz”, Nucl. Phys. Proc. Suppl., 192–193 (2009), 91–112, arXiv: 0901.4744 | DOI | MR
[54] Nekrasov N. A., Shatashvili S. L., “Quantization of integrable systems and four dimensional gauge theories”, XVI-th International Congress on Mathematical Physics (Prague, August 2009), World Sci. Publ., Hackensack, NJ, 2010, 265–289, arXiv: 0908.4052 | DOI | MR | Zbl
[55] Okounkov A., Pandharipande R., “Quantum cohomology of the Hilbert scheme of points in the plane”, Invent. Math., 179:3 (2010), 523–557, arXiv: math/0411210 | DOI | MR | Zbl
[56] Reshetikhin N. Yu., Semenov-Tian-Shansky M. A., “Central extensions of quantum current groups”, Lett. Math. Phys., 19:2 (1990), 133–142 | DOI | MR | Zbl
[57] Reshetikhin N., Varchenko A., Quasiclassical asymptotics of solutions to the KZ equations, arXiv: hep-th/9402126 | MR
[58] Shiraishi J., Kubo H., Awata H., Odake S., “A quantum deformation of the Virasoro algebra and Macdonald symmetric functions”, Lett. Math. Phys., 38:1 (1996), 33–51, arXiv: q-alg/9507034 | DOI | MR | Zbl
[59] Tsymbaliuk A., The affine Yangian of $\mathfrak{gl}_1$ revisited, arXiv: 1404.5240 | MR
[60] Volkov A. Yu., “Quantum lattice KdV equation”, Lett. Math. Phys., 39:4 (1997), 313–329, arXiv: hep-th/9509024 | DOI | MR | Zbl