Integrable systems, shuffle algebras, and Bethe equations
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 2, pp. 251-306.

Voir la notice de l'article provenant de la source Math-Net.Ru

We speak about the part of integrable system theory dealing with conformal theory and $ W$-algebras (ordinary and deformed). Some new approaches to finding Bethe equations that describe the spectrum of Hamiltonians of these quantum integrable systems are developed. The derivation of the Bethe equations is based on the technique of shuffle algebras arising in quantum group theory.
@article{MMO_2016_77_2_a3,
     author = {B. L. Feigin},
     title = {Integrable systems, shuffle algebras, and {Bethe} equations},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {251--306},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2016_77_2_a3/}
}
TY  - JOUR
AU  - B. L. Feigin
TI  - Integrable systems, shuffle algebras, and Bethe equations
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2016
SP  - 251
EP  - 306
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2016_77_2_a3/
LA  - ru
ID  - MMO_2016_77_2_a3
ER  - 
%0 Journal Article
%A B. L. Feigin
%T Integrable systems, shuffle algebras, and Bethe equations
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2016
%P 251-306
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2016_77_2_a3/
%G ru
%F MMO_2016_77_2_a3
B. L. Feigin. Integrable systems, shuffle algebras, and Bethe equations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 2, pp. 251-306. http://geodesic.mathdoc.fr/item/MMO_2016_77_2_a3/

[1] Gelfand I. M., Dikii L. A., “Asimptotika rezolventy shturm–liuvillevskikh uravnenii i algebra uravnenii Kortevega–de Friza”, UMN, 30:5(185) (1975), 67–100 | Zbl

[2] Drinfeld V. G., “Kvantovye gruppy”, Differentsialnaya geometriya, gruppy Li i mekhanika. VIII, Zap. nauchn. sem. LOMI, 155, 1986, 18–49 | Zbl

[3] Drinfeld V. G., “O pochti kokommutativnykh algebrakh Khopfa”, Algebra i analiz, 1:2 (1989), 30–46

[4] Drinfeld V. G., “Novaya realizatsiya yangianov i kvantovannykh affinnykh algebr”, DAN SSSR, 36 (1988), 212–216 | Zbl

[5] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | Zbl

[6] Dzhimbo M., Miva T., Algebraicheskii analiz tochno reshaemykh reshetochnykh modelei, RKhD, Izhevsk, 2000

[7] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980

[8] Kirillov A. A., “Orbity gruppy diffeomorfizmov okruzhnosti i lokalnye superalgebry Li”, Funkts. analiz i ego pril., 15:2 (1981), 75–76 | Zbl

[9] Lukyanov S. L., Fateev V. A., “Konformno–invariantnye modeli dvumernoi kvantovoi teorii polya s simmetriei $Z_N$”, ZhETF, 94:3 (1988), 23–37

[10] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$–mernogo tverdogo tela”, Funkts. analiz i ego pril., 10:4 (1976), 93–94

[11] Mischenko A. S., Fomenko A. T., “Integriruemost uravnenii Eilera na poluprostykh algebrakh Li”, Tr. sem. po vektornomu i tenzornomu analizu, 19, 1979, 3–94 | Zbl

[12] Rybnikov L. G., “Metod sdviga invariantov i model Godena”, Funkts. analiz i ego pril., 40:3 (2006), 30–43, arXiv: hep-th/9412229 | DOI | Zbl

[13] Perelomov A. M., Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990

[14] Reiman A., Semenov–Tyan–Shanskii M., Integriruemye sistemy, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003

[15] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220

[16] Talalaev D. V., “Kvantovaya sistema Godena”, Funkts. analiz i ego pril., 40:1 (2006), 86–91 | DOI | Zbl

[17] Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5(209) (1979), 13–63

[18] Feigin B. L., “Polubeskonechnye gomologii algebr Li, Katsa–Mudi i Virasoro”, UMN, 39:2(236) (1984), 195–196

[19] Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe Ansatz”, Comm. Math. Phys., 177:2 (1996), 381–398 | DOI | MR | Zbl

[20] Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory. II. Q-operator and DDV equation”, Commun. Math. Phys., 190:2 (1997), 247–278, arXiv: hep-th/9604044 | DOI | MR | Zbl

[21] Beilinson A., Drinfeld V., Quantization of Hitchin's integrable system and Hecke eigensheaves, http://www.math.uchicago.edu/m̃itya/langlands/QuantizationHitchin.pdf

[22] Belavin A., Polyakov A., Schwarz A., Tyupkin Y., “Pseuvdoparticle solutions of the Yang–Mills equations”, Phys. Lett., B59 (1975), 85–87 | DOI | MR

[23] Belavin A., Polyakov A., Zamolodchikov A., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys., B241 (1984), 333 | DOI | MR | Zbl

[24] Buryak A., Rossi P., “Double ramification cycles and quantum integrable systems”, Lett. Math. Phys., 106:3 (2016), 289–317, arXiv: 1503.03687 | DOI | MR | Zbl

[25] Ding J., Iohara K., “Generalization of Drinfeld quantum affine algebras”, Lett. Math. Phys., 41 (1997), 181–193 | DOI | MR | Zbl

[26] Etingof P., Whittaker functions on quantum groups and $q$-deformed Toda operators, arXiv: math/9901053 | MR

[27] Etingof P., Kazhdan D., “Quantization of Lie bialgebras, I”, Selecta Math., 2:1 (1996), 1–41 | DOI | MR | Zbl

[28] Feigin B., Frenkel E., “Quantization of the Drinfeld–Sokolov reduction”, Phys. Lett. Ser. B, 246:1–2 (1990), 75–81 | DOI | MR | Zbl

[29] Feigin B., Frenkel E., “Duality in $W$-algebras”, Int. Math. Res. Notices, 6 (1991), 75–82 | DOI | MR | Zbl

[30] Feigin B., Frenkel E., “Free field resolutions in affine Toda field theories”, Phys. Lett. Ser. B, 276:1–2 (1992), 79–86 | DOI | MR

[31] Feigin B., Frenkel E., “Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras”, Int. J. Mod. Phys. Ser. A, 7, Suppl. 1A (1992), 197–215 | DOI | MR | Zbl

[32] Feigin B., Frenkel E., “Integrals of motion and quantum groups”, Lecture Notes, 1620 (1995), 349–418 | MR

[33] Feigin B., Frenkel E., “Quantum $W$-algebras and elliptic algebras”, Comm. Math. Phys., 178:3 (1996), 653–677, arXiv: q-alg/9508009 | DOI | MR

[34] Feigin B., Frenkel E., “Quantization of soliton systems and Langlands duality”, Adv. Stud. Pure Math., 61, Math. Soc., Tokyo, 2011, 185–274, arXiv: 0705.2486 | MR | Zbl

[35] Feigin B., Jimbo M., Miwa T., Mukhin E., “Representations of quantum toroidal $\mathfrak{gl}_n$”, J. Algebra, 380 (2013), 78–108, arXiv: 1204.5378 | DOI | MR | Zbl

[36] Feigin B., Jimbo M., Miwa T., Mukhin E., “Quantum toroidal $\mathfrak{gl}_1$ and Bethe ansatz”, J. Phys. Ser. A, 48:24 (2015), 244001, arXiv: 1502.07194 | DOI | MR | Zbl

[37] Feigin B., Jimbo M., Miwa T., Mukhin E., Finite type modules and Bethe ansatz for quantum toroidal $\mathfrak{gl}(1)$, arXiv: 1603.02765 | MR

[38] Feigin B., Hashizume K., Hoshino A., Shiraishi J., Yanagida S., “A commutative algebra on degenerate $\mathbb{CP}^1$ and Macdonald polynomials”, J. Math. Phys., 50 (2009), 095215, arXiv: 0904.2291 | DOI | MR | Zbl

[39] Feigin B., Hoshino A., Shibahara J., Shiraishi J., Yanagida S., “Kernel function and quantum algebras”, RIMS kokyuroku, 1689 (2010), 133–152, arXiv: 1002.2485

[40] Feigin B. L., Odesskii A. V., “Quantized moduli spaces of the bundles on the elliptic curve and their applications”, NATO Sci. Ser. II: Math. Phys. Chem., 35 (2001), 123–137, arXiv: math/9812059 [math.QA] | MR | Zbl

[41] Feigin B., Tsymbaliuk A., “Bethe subalgebras of quantum affine $\mathfrak{gl}(n)$ via shuffle algebras”, Selecta Math., 22:2 (2016), 979–101, arXiv: 1504.01696 | DOI | MR

[42] Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, Math. Surv. and Monog., 88, AMS, Providence, RI, 2004 | DOI | MR | Zbl

[43] Frenkel E., Reshetikhin N., “Quantum affine algebras and deformations of the Virasoro and $W$–algebras”, Comm. Math. Phys., 178:1 (1996), 237–264, arXiv: q-alg/9505025 | DOI | MR | Zbl

[44] Frenkel E., Reshetikhin N., “Deformations of $W$-algebras associated to simple Lie algebras”, Comm. Math. Phys., 197:1 (1998), 1–32, arXiv: q-alg/9708006 | MR | Zbl

[45] Frenkel E., Reshetikhin N., “The $q$-characters of representations of quantum affine algebras and deformations of $W$-algebras”, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math., 248, AMS, Providence, RI, 1999, 163–205, arXiv: math/9810055 [math.QA] | DOI | MR | Zbl

[46] Jimbo M., “A $q$-difference analogue of $U(\mathfrak{g})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10:1 (1985), 63–69 | DOI | MR | Zbl

[47] Khesin B., Zakharevich I., “Poisson–Lie group of pseudodifferential symbols”, Comm. Math. Phys., 171:3 (1995), 475–530, arXiv: hep-th/9312088 | DOI | MR | Zbl

[48] Litvinov A. V., “On spectrum of ILW hierarchy in conformal field theory”, J. High Energy Phys., 2013, no. 11, 155, arXiv: 1307.8094 | DOI | MR | Zbl

[49] Maulik D., Okounkov A., Quantum groups and quantum cohomology, arXiv: 1211.1287

[50] Miki K., “A $(q,\gamma)$ analog of the $W_{1+\infty}$ algebra”, J. Math. Phys., 48:12 (2007), 3520 | DOI | MR

[51] Mukhin E., Tarasov V., Varchenko A., “Bethe algebra of homogeneous XXX Heisenberg model has simple spectrum”, Comm. Math. Phys., 288:1 (2009), 1–42, arXiv: 0706.0688 | DOI | MR | Zbl

[52] Mukhin E., Tarasov V., Varchenko A., “On separation of variables and completeness of the Bethe ansatz for quantum $\mathfrak{gl}_N$ Gaudin model”, Glasgow Math. J., 51A (2009), 137–145, arXiv: 0712.0981 | DOI | MR | Zbl

[53] Nekrasov N. A., Shatashvili S. L., “Supersymmetric vacua and Bethe ansatz”, Nucl. Phys. Proc. Suppl., 192–193 (2009), 91–112, arXiv: 0901.4744 | DOI | MR

[54] Nekrasov N. A., Shatashvili S. L., “Quantization of integrable systems and four dimensional gauge theories”, XVI-th International Congress on Mathematical Physics (Prague, August 2009), World Sci. Publ., Hackensack, NJ, 2010, 265–289, arXiv: 0908.4052 | DOI | MR | Zbl

[55] Okounkov A., Pandharipande R., “Quantum cohomology of the Hilbert scheme of points in the plane”, Invent. Math., 179:3 (2010), 523–557, arXiv: math/0411210 | DOI | MR | Zbl

[56] Reshetikhin N. Yu., Semenov-Tian-Shansky M. A., “Central extensions of quantum current groups”, Lett. Math. Phys., 19:2 (1990), 133–142 | DOI | MR | Zbl

[57] Reshetikhin N., Varchenko A., Quasiclassical asymptotics of solutions to the KZ equations, arXiv: hep-th/9402126 | MR

[58] Shiraishi J., Kubo H., Awata H., Odake S., “A quantum deformation of the Virasoro algebra and Macdonald symmetric functions”, Lett. Math. Phys., 38:1 (1996), 33–51, arXiv: q-alg/9507034 | DOI | MR | Zbl

[59] Tsymbaliuk A., The affine Yangian of $\mathfrak{gl}_1$ revisited, arXiv: 1404.5240 | MR

[60] Volkov A. Yu., “Quantum lattice KdV equation”, Lett. Math. Phys., 39:4 (1997), 313–329, arXiv: hep-th/9509024 | DOI | MR | Zbl