On the existence of a global solution of the modified Navier--Stokes equations
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 2, pp. 219-249.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove global existence theorems for initial-boundary value problems for the modified Navier–Stokes equations used when modeling ocean dynamic processes. First, the case of distinct vertical and horizontal viscosities for the Navier–Stokes equations is considered. Then a result due to Ladyzhenskaya for the modified Navier–Stokes equations is improved, whereby the elliptic operator is strengthened with respect to the horizontal variables alone and only for the horizontal momentum equations. Finally, the global existence and uniqueness of a solution is proved for the primitive equations describing the large-scale ocean dynamics.
@article{MMO_2016_77_2_a2,
     author = {G. M. Kobel'kov},
     title = {On the existence of a global solution of the modified {Navier--Stokes} equations},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {219--249},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2016_77_2_a2/}
}
TY  - JOUR
AU  - G. M. Kobel'kov
TI  - On the existence of a global solution of the modified Navier--Stokes equations
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2016
SP  - 219
EP  - 249
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2016_77_2_a2/
LA  - ru
ID  - MMO_2016_77_2_a2
ER  - 
%0 Journal Article
%A G. M. Kobel'kov
%T On the existence of a global solution of the modified Navier--Stokes equations
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2016
%P 219-249
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2016_77_2_a2/
%G ru
%F MMO_2016_77_2_a2
G. M. Kobel'kov. On the existence of a global solution of the modified Navier--Stokes equations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 2, pp. 219-249. http://geodesic.mathdoc.fr/item/MMO_2016_77_2_a2/

[1] Drutsa A. V., “Suschestvovanie «v tselom» resheniya sistemy uravnenii krupnomasshtabnoi dinamiki okeana na mnogoobrazii”, Matem. sb., 202:10 (2011), 55–86 | DOI | Zbl

[2] Zhikov V. V., “Ob odnom podkhode k razreshimosti obobschennykh uravnenii Nave–Stoksa”, Funkts. analiz i ego pril., 43:3 (2009), 33–53 | DOI

[3] Kobelkov G. M., “Suschestvovanie resheniya «v tselom» dlya uravnenii dinamiki okeana”, Doklady RAN, 407:4 (2006), 457–459 | Zbl

[4] Ladyzhenskaya O. A., Matematicheskie voprosy vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[5] Ladyzhenskaya O. A., “O modifikatsiyakh uravnenii Nave–Stoksa dlya bolshikh gradientov skorostei”, Zap. nauchn. sem. LOMI, 7, 1968, 126–154 | Zbl

[6] G. I. Marchuk, A. S. Sarkisyan (red.), Matematicheskie modeli tsirkulyatsii v okeane, Nauka, Novosibirsk, 1980

[7] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[8] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977

[9] Ipatova V. M., Agoshkov V. I., Kobelkov G. M., Zalesny V. B., “Theory of solvability of boundary value problems and data assimilation problems for ocean dynamics equations”, Russ. J. Numer. Anal. Math. Model., 25:6 (2010), 511–534 | DOI | MR | Zbl

[10] Cao C., Titi E. S., “Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics”, Ann. of Math., 166:1 (2007), 245–267 | DOI | MR | Zbl

[11] Drutsa A. V., “Existence “in the large” of a solution to primitive equations in a domain with uneven bottom”, Russ. J. Numer. Anal. Math. Model., 24:6 (2009), 515–542 | DOI | MR | Zbl

[12] Gorshkov A. V., “Uniqueness of a solution to the problem of atmosphere dynamics”, J. of Math. Sci., 167:3 (2010), 340–357 | DOI | MR | Zbl

[13] Guillén-González F., Masmoudi N., Rodríguez-Bellido M. A., “Anisotropic estimates and strong solutions of the primitive equations”, Diff. Int. Equat., 14:11 (2001), 1381–1408 | MR | Zbl

[14] Kobelkov G. M., “Existence of a solution “in the large” for the 3D large scale ocean dynamics equations”, C. R. Acad. Sci. Paris. Ser. II, 343:4 (2006), 283–286 | DOI | MR | Zbl

[15] Kobelkov G. M., “Modifications of the Navier–Stokes equations”, Russ. J. Numer. Anal. Math. Model., 30:2 (2015), 87–94 | DOI | MR

[16] Kobelkov G. M., “Existence of a solution “in the large” for ocean dynamics equations”, J. Math. Fluid Mech., 9:4 (2007), 588–610 | DOI | MR | Zbl

[17] Lewandowski R., Analyse mathématique en océanographie, Masson, Paris, 1997 | MR

[18] Lions J. L., Temam R., Wang S., “On the equations of the large-scale ocean”, Nonlinearity, 5 (1992), 1007–1053 | DOI | MR | Zbl

[19] Lions J. L., Temam R., Wang S., “New formulations of the primitive equations of the atmosphere and applications”, Nonlinearity, 5 (1992), 237–288 | DOI | MR | Zbl

[20] Temam R., Ziane M., “Some mathematical problems in geophysical fluid dynamics”, Handbook mathematical fluid dynamics, v. 3, Elsevier, Amsterdam, 2004, 535–658 | MR

[21] Hu Ch., Temam R., Ziane M., “The primitive equations on the large scale ocean under the small depth hypothesis”, Discrete Contin. Dyn. Syst., 9:1 (2003), 97–131 | MR | Zbl