Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2016_77_2_a2, author = {G. M. Kobel'kov}, title = {On the existence of a global solution of the modified {Navier--Stokes} equations}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {219--249}, publisher = {mathdoc}, volume = {77}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2016_77_2_a2/} }
TY - JOUR AU - G. M. Kobel'kov TI - On the existence of a global solution of the modified Navier--Stokes equations JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2016 SP - 219 EP - 249 VL - 77 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2016_77_2_a2/ LA - ru ID - MMO_2016_77_2_a2 ER -
G. M. Kobel'kov. On the existence of a global solution of the modified Navier--Stokes equations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 2, pp. 219-249. http://geodesic.mathdoc.fr/item/MMO_2016_77_2_a2/
[1] Drutsa A. V., “Suschestvovanie «v tselom» resheniya sistemy uravnenii krupnomasshtabnoi dinamiki okeana na mnogoobrazii”, Matem. sb., 202:10 (2011), 55–86 | DOI | Zbl
[2] Zhikov V. V., “Ob odnom podkhode k razreshimosti obobschennykh uravnenii Nave–Stoksa”, Funkts. analiz i ego pril., 43:3 (2009), 33–53 | DOI
[3] Kobelkov G. M., “Suschestvovanie resheniya «v tselom» dlya uravnenii dinamiki okeana”, Doklady RAN, 407:4 (2006), 457–459 | Zbl
[4] Ladyzhenskaya O. A., Matematicheskie voprosy vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970
[5] Ladyzhenskaya O. A., “O modifikatsiyakh uravnenii Nave–Stoksa dlya bolshikh gradientov skorostei”, Zap. nauchn. sem. LOMI, 7, 1968, 126–154 | Zbl
[6] G. I. Marchuk, A. S. Sarkisyan (red.), Matematicheskie modeli tsirkulyatsii v okeane, Nauka, Novosibirsk, 1980
[7] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[8] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977
[9] Ipatova V. M., Agoshkov V. I., Kobelkov G. M., Zalesny V. B., “Theory of solvability of boundary value problems and data assimilation problems for ocean dynamics equations”, Russ. J. Numer. Anal. Math. Model., 25:6 (2010), 511–534 | DOI | MR | Zbl
[10] Cao C., Titi E. S., “Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics”, Ann. of Math., 166:1 (2007), 245–267 | DOI | MR | Zbl
[11] Drutsa A. V., “Existence “in the large” of a solution to primitive equations in a domain with uneven bottom”, Russ. J. Numer. Anal. Math. Model., 24:6 (2009), 515–542 | DOI | MR | Zbl
[12] Gorshkov A. V., “Uniqueness of a solution to the problem of atmosphere dynamics”, J. of Math. Sci., 167:3 (2010), 340–357 | DOI | MR | Zbl
[13] Guillén-González F., Masmoudi N., Rodríguez-Bellido M. A., “Anisotropic estimates and strong solutions of the primitive equations”, Diff. Int. Equat., 14:11 (2001), 1381–1408 | MR | Zbl
[14] Kobelkov G. M., “Existence of a solution “in the large” for the 3D large scale ocean dynamics equations”, C. R. Acad. Sci. Paris. Ser. II, 343:4 (2006), 283–286 | DOI | MR | Zbl
[15] Kobelkov G. M., “Modifications of the Navier–Stokes equations”, Russ. J. Numer. Anal. Math. Model., 30:2 (2015), 87–94 | DOI | MR
[16] Kobelkov G. M., “Existence of a solution “in the large” for ocean dynamics equations”, J. Math. Fluid Mech., 9:4 (2007), 588–610 | DOI | MR | Zbl
[17] Lewandowski R., Analyse mathématique en océanographie, Masson, Paris, 1997 | MR
[18] Lions J. L., Temam R., Wang S., “On the equations of the large-scale ocean”, Nonlinearity, 5 (1992), 1007–1053 | DOI | MR | Zbl
[19] Lions J. L., Temam R., Wang S., “New formulations of the primitive equations of the atmosphere and applications”, Nonlinearity, 5 (1992), 237–288 | DOI | MR | Zbl
[20] Temam R., Ziane M., “Some mathematical problems in geophysical fluid dynamics”, Handbook mathematical fluid dynamics, v. 3, Elsevier, Amsterdam, 2004, 535–658 | MR
[21] Hu Ch., Temam R., Ziane M., “The primitive equations on the large scale ocean under the small depth hypothesis”, Discrete Contin. Dyn. Syst., 9:1 (2003), 97–131 | MR | Zbl