Some problems concerning the solvability of the nonlinear stationary Boltzmann equation in the framework of the BGK model
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 1, pp. 103-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the BGK (Bhatnagar–Gross–Krook) model, we derive a system of nonlinear integral equations for the macroscopic variables both in a finite plane channel $ \Pi _{r}$ of thickness $ r$ $ (r+\infty )$ and in the subspace $ \Pi _\infty $ $ (r=+\infty )$ from the nonlinear integro-differential Boltzmann equation. Solvability problems are discussed and solution methods are suggested for these systems of nonlinear integral equations. Theorems on the existence of bounded positive solutions are proved and two-sided estimates of these solutions are obtained for the resulting nonlinear integral equations of the Urysohn type describing the temperature (Theorems 1 and 3). A theorem on the existence of a unique solution in the space $ L_1[0,r]$ is proved for the linear integral equations describing the velocity and density. Integral estimates for the solutions are obtained (see Theorem 2 and the Corollary). The nonlinear system of integral equations in the subspace obtained for the macroscopic variables in the framework of the nonlinear BGK model of the Boltzmann equation is shown to have no bounded solutions with finite limit at infinity other than a constant solution. The solution of the linear problem obtained by linearizing the corresponding nonlinear system is proved to be $ O(x)$ as $ x\rightarrow +\infty $ (Theorem 3).
@article{MMO_2016_77_1_a3,
     author = {A. Kh. Khachatryan and Kh. A. Khachatryan},
     title = {Some problems concerning the solvability of the nonlinear stationary {Boltzmann} equation in the framework of the {BGK} model},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {103--130},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a3/}
}
TY  - JOUR
AU  - A. Kh. Khachatryan
AU  - Kh. A. Khachatryan
TI  - Some problems concerning the solvability of the nonlinear stationary Boltzmann equation in the framework of the BGK model
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2016
SP  - 103
EP  - 130
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a3/
LA  - ru
ID  - MMO_2016_77_1_a3
ER  - 
%0 Journal Article
%A A. Kh. Khachatryan
%A Kh. A. Khachatryan
%T Some problems concerning the solvability of the nonlinear stationary Boltzmann equation in the framework of the BGK model
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2016
%P 103-130
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a3/
%G ru
%F MMO_2016_77_1_a3
A. Kh. Khachatryan; Kh. A. Khachatryan. Some problems concerning the solvability of the nonlinear stationary Boltzmann equation in the framework of the BGK model. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 1, pp. 103-130. http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a3/

[1] Cercignani C., The Boltzmann equation and its applications, Springer-Verlag, New York, 1988 | MR | Zbl

[2] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967

[3] Villani C., “Cercignani's conjecture is sometimes true and always almost true”, Comm. Math. Phys., 234:3 (2003), 455–490 | DOI | MR | Zbl

[4] Liepmann H. W., Narasimha R., Chahine M. T., “Structure of a plane shock layer”, Phys. Fluids, 5:11 (1962), 1313–1324 | DOI | MR | Zbl

[5] Latyshev A. V., Yushkanov A. A., Analiticheskoe reshenie granichnykh zadach dlya kineticheskoi teorii, MGOU, M., 2004

[6] Barichello L. B., Siewert C. E., “The temperature-jump problem in rarefied-gas dynamics”, European J. of Appl. Math., 11 (2000), 353–364 | DOI | MR | Zbl

[7] Andriyan S. M., Khachatryan A. Kh., “Ob odnoi zadache fizicheskoi kinetiki”, Zhurn. vych. matem. i matem. fiz., 45:11 (2005), 2061–2069 | Zbl

[8] Yengibaryan N. B., Khachatryan A. Kh., “On temperature and density jumps in kinetic theory of gases”, Horizons in world physics, 243, Nova Science Publisher, 2003, 103–117

[9] Terdzhyan Ts. E., Khachatryan A. Kh., “Ob odnoi sisteme integralnykh uravnenii v kineticheskoi teorii”, Zhurn. vych. matem. i matem. fiz., 49:4 (2009), 715–721 | Zbl

[10] Welander P., “On the temperature jump in a rarefied gas”, Ark. Fys., 7 (1954), 507–553 | MR

[11] Khachatryan A. Kh., Khachatryan Kh. A., “Kachestvennye razlichiya reshenii dlya odnoi modeli uravneniya Boltsmana v lineinom i nelineinom sluchayakh”, TMF, 172:3 (2012), 497–504 | DOI | Zbl

[12] Khachatryan A. Kh., Khachatryan Kh. A., “Kachestvennoe razlichie reshenii dlya statsionarnykh modelnykh uravnenii Boltsmana v lineinom i nelineinom sluchayakh”, TMF, 180:2 (2014), 272–288 | DOI | Zbl

[13] Arabadzhyan L. G., Engibaryan N. B., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Ser. Mat. analiz, 22, 1984, 175–244 | Zbl

[14] Engibaryan N. B., Khachatryan A. Kh., “O nekotorykh integralnykh uravneniyakh tipa svertki v kineticheskoi teorii”, Zhurn. vych. matem. i matem. fiz., 38:3 (1998), 466–482 | Zbl