Necessary and sufficient conditions for the topological conjugacy of 3-diffeomorphisms with heteroclinic tangencies
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 1, pp. 83-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a class of three-dimensional diffeomorphisms that differ from gradient-like systems through the presence of heteroclinic tangencies. It is well known that such cascades are not structurally stable. However, here we find a complete system of topological invariants for a certain meaningful class of such diffeomorphisms.
@article{MMO_2016_77_1_a2,
     author = {T. M. Mitryakova and O. V. Pochinka},
     title = {Necessary and sufficient conditions for the topological conjugacy of 3-diffeomorphisms with heteroclinic tangencies},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {83--102},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a2/}
}
TY  - JOUR
AU  - T. M. Mitryakova
AU  - O. V. Pochinka
TI  - Necessary and sufficient conditions for the topological conjugacy of 3-diffeomorphisms with heteroclinic tangencies
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2016
SP  - 83
EP  - 102
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a2/
LA  - ru
ID  - MMO_2016_77_1_a2
ER  - 
%0 Journal Article
%A T. M. Mitryakova
%A O. V. Pochinka
%T Necessary and sufficient conditions for the topological conjugacy of 3-diffeomorphisms with heteroclinic tangencies
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2016
%P 83-102
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a2/
%G ru
%F MMO_2016_77_1_a2
T. M. Mitryakova; O. V. Pochinka. Necessary and sufficient conditions for the topological conjugacy of 3-diffeomorphisms with heteroclinic tangencies. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 1, pp. 83-102. http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a2/

[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, DAN SSSR, 14:5 (1937), 247–250

[2] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientno–podobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh, 1”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. temat. sb. nauchn. tr., ed. E. A. Lentovich–Andronova, GGU, Gorkii, 1985, 22–38

[3] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientno–podobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh, 2”, Metody kachestvennoi teorii differentsialnykh uravnenii, ed. E. A. Lentovich–Andronova, GGU, Gorkii, 1987, 24–32

[4] Belitskii G. R., Normalnye formy, invarianty i lokalnye otobrazheniya, Naukova dumka, Kiev, 1979

[5] Bonatti Ch., Grines V., Medvedev V., Pécou E., “Topological classification of gradient-like diffeomorphisms on $3$-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR | Zbl

[6] Bonatti X., Grines V. Z., Pochinka O. V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3–mnogoobraziyakh”, Tr. MIAN, 250, 2005, 5–53 | Zbl

[7] Grines V. Z., Pochinka O. V., “Kaskady Morsa–Smeila na 3–mnogoobraziyakh”, UMN, 68:1(409) (2013), 129–188 | DOI | Zbl

[8] Grines V. Z., Pochinka O. V., Vvedenie v topologicheskuyu klassifikatsiyu kaskadov na mnogoobraziyakh razmernosti dva i tri, RKhD, IKI, Izhevsk, 2011

[9] Grines E. A., Pochinka O. V., “Necessary conditions of topological conjugacy for three-dimensional diffeomorphisms with heteroclinic tangencies”, Dinamicheskie sistemy, 3:3–4(31) (2013), 185–200 | Zbl

[10] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, DAN SSSR, 103:4 (1955), 557–560 | Zbl

[11] Melo W., “Moduli of stability of two-dimensional diffeomorphisms”, Topology, 19:1 (1980), 9–21 | DOI | MR | Zbl

[12] Melo W., Palis J., “Moduli of stability for diffeomorphisms”, Global theory of dynamical systems, Proc. Internat. Conf. (Northwectern Univ. Evanston, 1979), Lecture Notes in Math., 819, Springer, Berlin, 1980, 318–339 | DOI | MR

[13] Melo W., Strien S. J., “Diffeomorphisms on surfaces with a finite number of moduli”, Ergod. Th. and Dynam. Sys., 7:3 (1987), 415–462 | MR | Zbl

[14] Mitryakova T. M., Pochinka O. V., “Klassifikatsiya prosteishikh diffeomorfizmov sfery $\mathbf{S}^2$ s odnim modulem ustoichivosti”, Sovremennaya matematika i ee prilozheniya, 54, Institut kibernetiki AN Gruzii, 2008, 99–113

[15] Mitryakova T. M., Pochinka O. V., “O neobkhodimykh i dostatochnykh usloviyakh topologicheskoi sopryazhennosti diffeomorfizmov poverkhnostei s konechnym chislom orbit geteroklinicheskogo kasaniya”, Tr. MIAN, 270, 2010, 198–219 | Zbl

[16] Mitryakova T. M., Pochinka O. V., “K voprosu o klassifikatsii diffeomorfizmov poverkhnostei s konechnym chislom modulei topologicheskoi sopryazhennosti”, Nelineinaya dinamika, 6:1 (2010), 91–105

[17] Newhouse S., Palis J., Takens F., “Bifurcations and stability of families of diffeomorphisms”, Publ. Math. IHES, 57:1 (1983), 5–71 | DOI | MR | Zbl

[18] Palis J., “A differentiable invariant of topological conjugacies and moduli of stability”, Dynamical systems, v. III, Astérisque, 51, Soc. Math. France, Paris, 1978, 335–346 | MR

[19] Palis Zh., di Melu V., Geometricheskaya teoriya dinamicheskikh sistem, Mir, M., 1986

[20] Peixoto M., “On the classification of flows on 2-manifolds”, Dynamical systems, Proc. Symp. Univ. Bahia, Salvador, Brasil, 1971, Acad. press, New York–London, 1973, 389–419 | MR

[21] Smale S., “On gradient dynamical systems”, Ann. Math., 74 (1961), 199–206 | DOI | MR | Zbl

[22] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, IKI, M.–Izhevsk, 2003