Local dynamics of two-component singularly perturbed parabolic systems
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 1, pp. 67-82

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the local dynamics in a neighbourhood of a stationary state of a two-component system of parabolic equations with periodic boundary conditions. In the critical cases we construct families of special equations–quasinormal forms whose solutions in principle give asymptotic solutions, up to the residual, of the original singularly perturbed system.
@article{MMO_2016_77_1_a1,
     author = {I. S. Kashchenko and S. A. Kashchenko},
     title = {Local dynamics of two-component singularly perturbed parabolic systems},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {67--82},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a1/}
}
TY  - JOUR
AU  - I. S. Kashchenko
AU  - S. A. Kashchenko
TI  - Local dynamics of two-component singularly perturbed parabolic systems
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2016
SP  - 67
EP  - 82
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a1/
LA  - ru
ID  - MMO_2016_77_1_a1
ER  - 
%0 Journal Article
%A I. S. Kashchenko
%A S. A. Kashchenko
%T Local dynamics of two-component singularly perturbed parabolic systems
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2016
%P 67-82
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a1/
%G ru
%F MMO_2016_77_1_a1
I. S. Kashchenko; S. A. Kashchenko. Local dynamics of two-component singularly perturbed parabolic systems. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 1, pp. 67-82. http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a1/