Local dynamics of two-component singularly perturbed parabolic systems
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 1, pp. 67-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the local dynamics in a neighbourhood of a stationary state of a two-component system of parabolic equations with periodic boundary conditions. In the critical cases we construct families of special equations–quasinormal forms whose solutions in principle give asymptotic solutions, up to the residual, of the original singularly perturbed system.
@article{MMO_2016_77_1_a1,
     author = {I. S. Kashchenko and S. A. Kashchenko},
     title = {Local dynamics of two-component singularly perturbed parabolic systems},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {67--82},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a1/}
}
TY  - JOUR
AU  - I. S. Kashchenko
AU  - S. A. Kashchenko
TI  - Local dynamics of two-component singularly perturbed parabolic systems
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2016
SP  - 67
EP  - 82
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a1/
LA  - ru
ID  - MMO_2016_77_1_a1
ER  - 
%0 Journal Article
%A I. S. Kashchenko
%A S. A. Kashchenko
%T Local dynamics of two-component singularly perturbed parabolic systems
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2016
%P 67-82
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a1/
%G ru
%F MMO_2016_77_1_a1
I. S. Kashchenko; S. A. Kashchenko. Local dynamics of two-component singularly perturbed parabolic systems. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 1, pp. 67-82. http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a1/

[1] Marsden Dzh., Mak–Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980

[2] Arnold V. I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, MTsNMO, M., 2012

[3] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979

[4] Kaschenko S. A., “Lokalnaya dinamika dvukhkomponentnykh kontrastnykh struktur v okrestnosti tochki bifurkatsii”, DAN SSSR, 312:2 (1990), 345–350 | MR | Zbl

[5] Kaschenko S. A., “Postroenie normalizovannykh sistem dlya issledovaniya dinamiki gibridnykh i giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 564–575 | Zbl

[6] Kaschenko S. A., “Normalization in the systems with small diffusion”, Internat. J. Bifur. Chaos, 6:7 (1996), 1093–1109 | DOI | MR | Zbl

[7] Kaschenko I. S., “Multistabilnost v nelineinykh parabolicheskikh sistemakh s maloi diffuziei”, Doklady RAN, 435:2 (2010), 164–167 | Zbl

[8] Kaschenko I. S., Kaschenko S. A., “Kvazinormalnye formy dlya parabolicheskikh sistem s silnoi nelineinostyu i maloi diffuziei”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1482–1491 | Zbl

[9] Kaschenko I. S., Kaschenko S. A., “Kvazinormalnye formy dvukhkomponentnykh singulyarno vozmuschennykh sistem”, Doklady RAN, 447:4 (2012), 376–381 | Zbl

[10] Arnold V. I., “Lektsii o bifurkatsiyakh i versalnykh semeistvakh”, UMN, 27:5 (1972), 119–184 | Zbl

[11] Kaschenko S. A., “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, DAN SSSR, 299:5 (1988), 1049–1053

[12] Bogdanov R., “Bifurcations of a Limit Cycle for a Family of Vector Fields on the Plane”, Selecta Math. Soviet., 1:4 (1981), 373–388

[13] Kaschenko S. A., “Prostranstvennye osobennosti vysokomodovykh bifurkatsii dvukhkomponentnykh sistem s maloi diffuziei”, Diff. uravneniya, 25:2 (1989), 262–270 | Zbl