Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 1, pp. 1-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present estimates (which are necessarily spectral) of the rate of convergence in the von Neumann ergodic theorem in terms of the singularity at zero of the spectral measure of the function to be averaged with respect to the corresponding dynamical system as well as in terms of the decay rate of the correlations (i.e., the Fourier coefficients of this measure). Estimates of the rate of convergence in the Birkhoff ergodic theorem are given in terms of the rate of convergence in the von Neumann ergodic theorem as well as in terms of the decay rate of the large deviation probabilities. We give estimates of the rate of convergence in both ergodic theorems for some classes of dynamical systems popular in applications, including some well-known billiards and Anosov systems.
@article{MMO_2016_77_1_a0,
     author = {A. G. Kachurovskii and I. V. Podvigin},
     title = {Estimates of the rate of convergence in the von {Neumann} and {Birkhoff} ergodic theorems},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {1--66},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a0/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
AU  - I. V. Podvigin
TI  - Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2016
SP  - 1
EP  - 66
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a0/
LA  - ru
ID  - MMO_2016_77_1_a0
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%A I. V. Podvigin
%T Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2016
%P 1-66
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a0/
%G ru
%F MMO_2016_77_1_a0
A. G. Kachurovskii; I. V. Podvigin. Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 1, pp. 1-66. http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a0/

[1] Neumann J. von, “Physical applications of the ergodic hypothesis”, Proc. Nat. Acad. Sci. USA, 18:3 (1932), 263–266 | DOI | MR

[2] Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh”, UMN, 51:4 (1996), 73–124 | DOI | Zbl

[3] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980

[4] Kachurovskii A. G., Reshetenko A. V., “O skorosti skhodimosti v ergodicheskoi teoreme fon Neimana s nepreryvnym vremenem”, Matem. sb., 201:4 (2010), 25–32 | DOI | Zbl

[5] Sinai Ya. G., “Ergodicheskaya teoriya gladkikh dinamicheskikh sistem. Gl. 6. Stokhastichnost gladkikh dinamicheskikh sistem. Elementy teorii KAM”, Dinamicheskie sistemy – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 2, VINITI, M., 1985, 115–122

[6] Young L.-S., “Statistical properties of dynamical systems with some hyperbolicity”, Ann. of Math., 147:3 (1998), 585–650 | DOI | MR | Zbl

[7] Young L.-S., “Recurrence times and rates of mixing”, Israel J. Math., 110 (1999), 153–188 | DOI | MR | Zbl

[8] Rey-Bellet L., Young L.-S., “Large deviations in non-uniformly hyperbolic dynamical systems”, Ergodic Theory Dynam. Systems, 28:2 (2008), 587–612 | DOI | MR | Zbl

[9] Melbourne I., Nicol M., “Large deviations for nonuniformly hyperbolic systems”, Trans. AMS, 360:12 (2008), 6661–6676 | DOI | MR | Zbl

[10] Melbourne I., “Large and moderate deviations for slowly mixing dynamical systems”, Proc. AMS, 137:5 (2009), 1735–1741 | DOI | MR | Zbl

[11] Leonov V. P., “O dispersii vremennykh srednikh statsionarnogo sluchainogo protsessa”, TVP, 6:1 (1961), 93–101

[12] Belyaev Yu. K., “Odin primer protsessa s peremeshivaniem”, TVP, 6:1 (1961), 101–102

[13] Kachurovskii A. G., Sedalischev V. V., “O konstantakh otsenok skorosti skhodimosti v ergodicheskoi teoreme fon Neimana”, Matem. zametki, 87:5 (2010), 756–763 | DOI | Zbl

[14] Kachurovskii A. G., Sedalischev V. V., “Konstanty otsenok skorosti skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa”, Matem. sb., 202:8 (2011), 21–40 | DOI | Zbl

[15] Dzhulai N. A., Kachurovskii A. G., “Konstanty otsenok skorosti skhodimosti v ergodicheskoi teoreme fon Neimana s nepreryvnym vremenem”, Sib. matem. zhurn., 52:5 (2011), 1039–1052 | Zbl

[16] Kachurovskii A. G., Sedalischev V. V., “O konstantakh otsenok skorosti skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 91:4 (2012), 624–628 | DOI | Zbl

[17] Sedalischev V. V., “Konstanty otsenok skorosti skhodimosti v ergodicheskoi teoreme Birkgofa s nepreryvnym vremenem”, Sib. matem. zhurn., 53:5 (2012), 1102–1110 | Zbl

[18] Sedalischev V. V., “Svyaz skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa v $L_p$”, Sib. matem. zhurn., 55:2 (2014), 412–426

[19] Kachurovskii A. G., Podvigin I. V., “Bolshie ukloneniya i skorosti skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 94:4 (2013), 569–577 | DOI | Zbl

[20] Kachurovskii A. G., Podvigin I. V., “Skorosti skhodimosti v ergodicheskikh teoremakh dlya nekotorykh bilyardov i diffeomorfizmov Anosova”, DAN, 451:1 (2013), 11–13 | Zbl

[21] Kachurovskii A. G., Podvigin I. V., “Skorosti skhodimosti v ergodicheskikh teoremakh dlya periodicheskogo gaza Lorentsa na ploskosti”, DAN, 455:1 (2014), 11–14 | Zbl

[22] Kachurovskii A. G., “O skhodimosti srednikh v ergodicheskoi teoreme dlya grupp $\mathbb{Z}^d$”, Zap. nauchn. sem. POMI, 256, 1999, 121–128 | Zbl

[23] Vershik A. M., Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh dlya lokalno konechnykh grupp i obraschënnye martingaly”, Diff. uravneniya i protsessy upravleniya, 1999, no. 1, 19–26

[24] Kachurovskii A. G., “On uniform convergence in the ergodic theorem”, J. Math. Sci. (New York), 95:5 (1999), 2546–2551 | DOI | MR | Zbl

[25] Shiryaev A. N., Veroyatnost, Nauka, M., 1989

[26] Cuny C., Lin M., “Pointwise ergodic theorems with rate and application to the CLT for Markov chains”, Ann. Inst. H. Poincaré Probab. Stat., 45:3 (2009), 710–733 | DOI | MR | Zbl

[27] Gomilko A., Haase M., Tomilov Yu., “On rates in mean ergodic theorems”, Math. Res. Lett., 18:2 (2011), 201–213 | DOI | MR | Zbl

[28] Gomilko A., Haase M., Tomilov Yu., “Bernstein functions and rates in mean ergodic theorems for operator semigroups”, J. Anal. Math., 118:2 (2012), 545–576 | DOI | MR | Zbl

[29] Gordin M. I., “O tsentralnoi predelnoi teoreme dlya statsionarnykh sluchainykh posledovatelnostei”, DAN SSSR, 188:4 (1969), 739–741 | Zbl

[30] Stenlund M., “A strong pair correlation bound implies the CLT for Sinai billiards”, J. Stat. Phys., 140:1 (2010), 154–169 | DOI | MR | Zbl

[31] Krengel U., Ergodic theorems, de Gruyter Studies in Math., 6, Walter de Gruyter, Berlin, 1985 | MR | Zbl

[32] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[33] Neumann J. von, “Proof of the quasi-ergodic hypothesis”, Proc. Nat. Acad. Sci. USA, 18:1 (1932), 70–82 | DOI

[34] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[35] Gaposhkin V. F., “O skorosti ubyvaniya veroyatnostei $\varepsilon$–uklonenii srednikh statsionarnykh protsessov”, Matem. zametki, 64:3 (1998), 366–372 | DOI | Zbl

[36] Gaposhkin V. F., “Otsenki srednikh dlya pochti vsekh realizatsii statsionarnykh protsessov”, Sib. matem. zhurn., 20:5 (1979), 978–989 | Zbl

[37] Gaposhkin V. F., “Skhodimost ryadov, svyazannykh so statsionarnymi posledovatelnostyami”, Izv. AN SSSR. Ser. matem., 39:6 (1975), 1366–1392 | Zbl

[38] Browder F., “On the iterations of transformations in noncompact minimal dynamical systems”, Proc. AMS, 9:5 (1958), 773–780 | DOI | MR | Zbl

[39] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965

[40] Assani I., Lin M., “On the one-sided Hilbert transform”, Contemp. Math., 430, 2007, 21–39 | DOI | MR | Zbl

[41] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 1–2, Mir, M., 1985

[42] Khelemskii A. Ya., Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004

[43] Gaposhkin V. F., “Neskolko primerov k zadache ob $\varepsilon$–ukloneniyakh dlya statsionarnykh posledovatelnostei”, TVP, 46:2 (2001), 370–375 | DOI | Zbl

[44] Bogachëv V. I., Teoriya mery, v. 1, RKhD, M.–Izhevsk, 2003

[45] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986

[46] Blank M. L., Ustoichivost i lokalizatsiya v khaoticheskoi dinamike, MTsNMO, M., 2001

[47] Lesigne E., Volný D., “Large deviations for generic stationary processes”, Colloq. Math., 84/85:1 (2000), 75–82 | MR | Zbl

[48] Sarig O., “Decay of correlations”, Handbook of Dynamical Systems, Part B, v. 1, 2006, 244–263

[49] Young L.-S., What are SRB measures, and which dynamical systems have them?, J. Stat. Phys., 108:5–6 (2002), 733–754 | DOI | MR | Zbl

[50] Liverani C., Saussol B., Vaienty S., “A probabilistic approach to intermittency”, Ergodic Theory Dynam. Systems, 19:3 (1999), 671–685 | DOI | MR | Zbl

[51] Hu H., “Decay of correlations for piecewise smooth maps with indifferent fixed points”, Ergodic Theory Dynam. Systems, 24:2 (2004), 495–524 | DOI | MR | Zbl

[52] Pollicott M., Sharp R., Yuri M., “Large deviations for maps with indifferent fixed points”, Nonlinearity, 11:4 (1998), 1173–1184 | DOI | MR

[53] Pollicott M., Sharp R., “Large deviations for intermittent maps”, Nonlinearity, 22:9 (2009), 2079–2092 | DOI | MR | Zbl

[54] Sarig O., “Subexponential decay of correlations”, Invent. Math., 150:3 (2002), 629–653 | DOI | MR | Zbl

[55] Gouëzel S., “Sharp polynomial estimates for the decay of correlations”, Israel J. Math., 139 (2004), 29–65 | DOI | MR | Zbl

[56] Markarian R., “Billiards with polynomial decay of correlations”, Ergodic Theory Dynam. Systems, 24:1 (2004), 177–197 | DOI | MR | Zbl

[57] Chernov N., Zhang H.-K., “Billiards with polynomial mixing rates”, Nonlinearity, 18:4 (2005), 1527–1553 | DOI | MR | Zbl

[58] Chernov N., Markarian R., “Dispersing billiards with cusps: slow decay of correlations”, Comm. Math. Phys., 270:3 (2007), 727–758 | DOI | MR | Zbl

[59] Chernov N., Zhang H.-K., “Improved estimates for correlations in billiards”, Comm. Math. Phys., 77:2 (2008), 305–321 | MR

[60] Chernov N., Markarian R., Chaotic billiards, Math. Surveys and Monographs, 127, AMS, Providence, RI, 2006 | DOI | MR | Zbl

[61] Troubetzkoy S., “Approximation and billiards”, Dynamical systems and Diophantine approximation, Sémin. congr., 19, Soc. Math. France, Paris, 2009, 173–185 | MR | Zbl

[62] Balint P., Melbourne I., “Decay of correlations and invariance principle for dispersing billiards with cusps, and related planar billiard flows”, J. Stat. Phys., 133:3 (2008), 435–447 | DOI | MR | Zbl

[63] Anikin V. M., Golubentsev A. F., Analiticheskie modeli determinirovannogo khaosa, Fizmatlit, M., 2007

[64] Anikin V. M., Arkadakskii C. C., Remizov A. S., “Analiticheskoe reshenie spektralnoi zadachi dlya operatora Perrona–Frobeniusa kusochno–lineinykh khaoticheskikh otobrazhenii”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 14:2 (2006), 16–34 | Zbl

[65] Parry W., “On the $\beta$-expansions of real numbers”, Acta Math. Acad. Sci. Hungar., 11:3–4 (1960), 401–416 | DOI | MR | Zbl

[66] Mayer D., Roepstorff G., “On the relaxation time of Gauss's continued–fraction map. I: The Hilbert space approach (Koopmanism)”, J. Stat. Phys., 47:1–2 (1987), 149–171 | DOI | MR | Zbl

[67] Mayer D., Roepstorff G., “On the relaxation time of Gauss's continued–fraction map. II: The Banach space approach (Transfer operator method)”, J. Stat. Phys, 50:1–2 (1988), 331–344 | DOI | MR | Zbl

[68] Antoniou I., Shkarin S., “Analyticity of smooth eigenfunctions and spectral analysis of the Gauss map”, J. Stat. Phys., 111:1–2 (2003), 355–369 | DOI | MR | Zbl

[69] Iosifescu M., Kraaikamp C., Metrical theory and continued fractions, Mathematics and its Applications, 547, Kluwer Acad. Publ., Dordrecht, 2002 | MR

[70] Waddington S., “Large deviation asymptotics for Anosov flows”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13:4 (1996), 445–484 | DOI | MR | Zbl

[71] Bressaud X., Liverani C., “Anosov diffeomorphisms and coupling”, Ergodic Theory Dynam. Systems, 22:1 (2002), 129–152 | DOI | MR | Zbl

[72] Bouen R., Metody simvolicheskoi dinamiki, Mir, M., 1979

[73] Orey L., Pelikan S., “Deviation of trajectory averages and the defect in Pesin's formula for Anosov diffeomorphisms”, Trans. AMS, 315:2 (1989), 741–753 | MR | Zbl

[74] Kifer Y., “Large deviations in dynamical systems and stochastic processes”, Trans. AMS, 321:2 (1990), 505–524 | DOI | MR | Zbl

[75] Pollicott M., Sharp R., “Large deviations, fluctuations and shrinking intervals”, Comm. Math. Phys., 290:1 (2009), 321–334 | DOI | MR | Zbl

[76] Young L.-S., “Some large deviation results for dynamical systems”, Trans. AMS, 318:2 (1990), 525–543 | MR | Zbl

[77] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1(151) (1970), 113–185

[78] Kachurovskii A. G., Podvigin I. V., “Otsenki skorosti skhodimosti v teoremakh Birkgofa i Bouena dlya potokov Anosova”, Vestnik KemGU, 47:3/1 (2011), 255–258

[79] Chernov N. I., “Markov approximations and decay of correlations for Anosov flows”, Ann. of Math., 147:2 (1998), 269–324 | DOI | MR | Zbl

[80] Dolgopyat D., “On decay of correlations in Anosov flows”, Ann. of Math., 147:2 (1998), 357–390 | DOI | MR | Zbl

[81] Dolgopyat D., “Prevalence of rapid mixing in hyperbolic flows”, Ergodic Theory Dynam. Systems, 18:5 (1998), 1097–1114 | DOI | MR | Zbl

[82] Dolgopyat D., “Prevalence of rapid mixing. II: Topological prevalence”, Ergodic Theory Dynam. Systems, 20:4 (2000), 1045–1059 | DOI | MR | Zbl

[83] Liverani C., “On contact Anosov flows”, Ann. of Math., 159:3 (2004), 1275–1312 | DOI | MR | Zbl

[84] Díaz-Ordaz K., “Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-like maps”, Discrete Contin. Dyn. Syst., 15:1 (2006), 159–176 | DOI | MR

[85] Lynch V., “Decay of correlations for non-Hölder observables”, Discrete Contin. Dyn. Syst., 16:1 (2006), 19–46 | DOI | MR | Zbl

[86] Zhang H.-K., “Decay of correlations on non-Hölder observables”, Int. J. Nonlinear Sci., 10:3 (2010), 359–369 | MR | Zbl

[87] Young L.-S., “Decay of correlations for certain quadratic maps”, Comm. Math. Phys., 146:1 (1992), 123–138 | DOI | MR | Zbl

[88] Keller G., Nowicki T., “Spectral theory, zeta functions and the distribution of periodic points for Collet–Eckmann maps”, Comm. Math. Phys., 149 (1992), 31–69 | DOI | MR | Zbl

[89] Benedicks M., Young L.-S., “Markov extensions and decay of correlations for certain Hénon maps”, Astérisque, 261, 2000, 13–56 | MR | Zbl

[90] Chernov N., “Decay of correlations and dispersing billiards”, J. Stat. Phys., 94:3–4 (1999), 513–556 | DOI | MR | Zbl

[91] Chernov N., Young L.-S., “Decay of correlations for Lorentz gases and hard balls”, Encycl. of Math. Sci., 101 (2001), 89–120 | MR

[92] Chernov N., “Advanced statistical properties of dispersing billiards”, J. Stat. Phys., 122:6 (2006), 1061–1094 | DOI | MR | Zbl

[93] Avila A., Gouëzel S., Yoccoz J.-C., “Exponential mixing for the Teichmüller flow”, Publ. Math. IHES, 104 (2006), 143–211 | DOI | MR | Zbl

[94] Athreya J. S., “Quantitative recurrence and large deviations for Teichmüller geodesic flow”, Geom. Dedicata, 119:1 (2006), 121–140 | DOI | MR | Zbl

[95] Araujo V., Bufetov A., “A large deviations bound for the Teichmuller flow on the moduli space of abelian differentials”, Ergodic Theory Dynam. Systems, 31:4 (2011), 1043–1071 | DOI | MR | Zbl