Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2016_77_1_a0, author = {A. G. Kachurovskii and I. V. Podvigin}, title = {Estimates of the rate of convergence in the von {Neumann} and {Birkhoff} ergodic theorems}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {1--66}, publisher = {mathdoc}, volume = {77}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a0/} }
TY - JOUR AU - A. G. Kachurovskii AU - I. V. Podvigin TI - Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2016 SP - 1 EP - 66 VL - 77 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a0/ LA - ru ID - MMO_2016_77_1_a0 ER -
%0 Journal Article %A A. G. Kachurovskii %A I. V. Podvigin %T Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems %J Trudy Moskovskogo matematičeskogo obŝestva %D 2016 %P 1-66 %V 77 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a0/ %G ru %F MMO_2016_77_1_a0
A. G. Kachurovskii; I. V. Podvigin. Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 77 (2016) no. 1, pp. 1-66. http://geodesic.mathdoc.fr/item/MMO_2016_77_1_a0/
[1] Neumann J. von, “Physical applications of the ergodic hypothesis”, Proc. Nat. Acad. Sci. USA, 18:3 (1932), 263–266 | DOI | MR
[2] Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh”, UMN, 51:4 (1996), 73–124 | DOI | Zbl
[3] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980
[4] Kachurovskii A. G., Reshetenko A. V., “O skorosti skhodimosti v ergodicheskoi teoreme fon Neimana s nepreryvnym vremenem”, Matem. sb., 201:4 (2010), 25–32 | DOI | Zbl
[5] Sinai Ya. G., “Ergodicheskaya teoriya gladkikh dinamicheskikh sistem. Gl. 6. Stokhastichnost gladkikh dinamicheskikh sistem. Elementy teorii KAM”, Dinamicheskie sistemy – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 2, VINITI, M., 1985, 115–122
[6] Young L.-S., “Statistical properties of dynamical systems with some hyperbolicity”, Ann. of Math., 147:3 (1998), 585–650 | DOI | MR | Zbl
[7] Young L.-S., “Recurrence times and rates of mixing”, Israel J. Math., 110 (1999), 153–188 | DOI | MR | Zbl
[8] Rey-Bellet L., Young L.-S., “Large deviations in non-uniformly hyperbolic dynamical systems”, Ergodic Theory Dynam. Systems, 28:2 (2008), 587–612 | DOI | MR | Zbl
[9] Melbourne I., Nicol M., “Large deviations for nonuniformly hyperbolic systems”, Trans. AMS, 360:12 (2008), 6661–6676 | DOI | MR | Zbl
[10] Melbourne I., “Large and moderate deviations for slowly mixing dynamical systems”, Proc. AMS, 137:5 (2009), 1735–1741 | DOI | MR | Zbl
[11] Leonov V. P., “O dispersii vremennykh srednikh statsionarnogo sluchainogo protsessa”, TVP, 6:1 (1961), 93–101
[12] Belyaev Yu. K., “Odin primer protsessa s peremeshivaniem”, TVP, 6:1 (1961), 101–102
[13] Kachurovskii A. G., Sedalischev V. V., “O konstantakh otsenok skorosti skhodimosti v ergodicheskoi teoreme fon Neimana”, Matem. zametki, 87:5 (2010), 756–763 | DOI | Zbl
[14] Kachurovskii A. G., Sedalischev V. V., “Konstanty otsenok skorosti skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa”, Matem. sb., 202:8 (2011), 21–40 | DOI | Zbl
[15] Dzhulai N. A., Kachurovskii A. G., “Konstanty otsenok skorosti skhodimosti v ergodicheskoi teoreme fon Neimana s nepreryvnym vremenem”, Sib. matem. zhurn., 52:5 (2011), 1039–1052 | Zbl
[16] Kachurovskii A. G., Sedalischev V. V., “O konstantakh otsenok skorosti skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 91:4 (2012), 624–628 | DOI | Zbl
[17] Sedalischev V. V., “Konstanty otsenok skorosti skhodimosti v ergodicheskoi teoreme Birkgofa s nepreryvnym vremenem”, Sib. matem. zhurn., 53:5 (2012), 1102–1110 | Zbl
[18] Sedalischev V. V., “Svyaz skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa v $L_p$”, Sib. matem. zhurn., 55:2 (2014), 412–426
[19] Kachurovskii A. G., Podvigin I. V., “Bolshie ukloneniya i skorosti skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 94:4 (2013), 569–577 | DOI | Zbl
[20] Kachurovskii A. G., Podvigin I. V., “Skorosti skhodimosti v ergodicheskikh teoremakh dlya nekotorykh bilyardov i diffeomorfizmov Anosova”, DAN, 451:1 (2013), 11–13 | Zbl
[21] Kachurovskii A. G., Podvigin I. V., “Skorosti skhodimosti v ergodicheskikh teoremakh dlya periodicheskogo gaza Lorentsa na ploskosti”, DAN, 455:1 (2014), 11–14 | Zbl
[22] Kachurovskii A. G., “O skhodimosti srednikh v ergodicheskoi teoreme dlya grupp $\mathbb{Z}^d$”, Zap. nauchn. sem. POMI, 256, 1999, 121–128 | Zbl
[23] Vershik A. M., Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh dlya lokalno konechnykh grupp i obraschënnye martingaly”, Diff. uravneniya i protsessy upravleniya, 1999, no. 1, 19–26
[24] Kachurovskii A. G., “On uniform convergence in the ergodic theorem”, J. Math. Sci. (New York), 95:5 (1999), 2546–2551 | DOI | MR | Zbl
[25] Shiryaev A. N., Veroyatnost, Nauka, M., 1989
[26] Cuny C., Lin M., “Pointwise ergodic theorems with rate and application to the CLT for Markov chains”, Ann. Inst. H. Poincaré Probab. Stat., 45:3 (2009), 710–733 | DOI | MR | Zbl
[27] Gomilko A., Haase M., Tomilov Yu., “On rates in mean ergodic theorems”, Math. Res. Lett., 18:2 (2011), 201–213 | DOI | MR | Zbl
[28] Gomilko A., Haase M., Tomilov Yu., “Bernstein functions and rates in mean ergodic theorems for operator semigroups”, J. Anal. Math., 118:2 (2012), 545–576 | DOI | MR | Zbl
[29] Gordin M. I., “O tsentralnoi predelnoi teoreme dlya statsionarnykh sluchainykh posledovatelnostei”, DAN SSSR, 188:4 (1969), 739–741 | Zbl
[30] Stenlund M., “A strong pair correlation bound implies the CLT for Sinai billiards”, J. Stat. Phys., 140:1 (2010), 154–169 | DOI | MR | Zbl
[31] Krengel U., Ergodic theorems, de Gruyter Studies in Math., 6, Walter de Gruyter, Berlin, 1985 | MR | Zbl
[32] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961
[33] Neumann J. von, “Proof of the quasi-ergodic hypothesis”, Proc. Nat. Acad. Sci. USA, 18:1 (1932), 70–82 | DOI
[34] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965
[35] Gaposhkin V. F., “O skorosti ubyvaniya veroyatnostei $\varepsilon$–uklonenii srednikh statsionarnykh protsessov”, Matem. zametki, 64:3 (1998), 366–372 | DOI | Zbl
[36] Gaposhkin V. F., “Otsenki srednikh dlya pochti vsekh realizatsii statsionarnykh protsessov”, Sib. matem. zhurn., 20:5 (1979), 978–989 | Zbl
[37] Gaposhkin V. F., “Skhodimost ryadov, svyazannykh so statsionarnymi posledovatelnostyami”, Izv. AN SSSR. Ser. matem., 39:6 (1975), 1366–1392 | Zbl
[38] Browder F., “On the iterations of transformations in noncompact minimal dynamical systems”, Proc. AMS, 9:5 (1958), 773–780 | DOI | MR | Zbl
[39] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965
[40] Assani I., Lin M., “On the one-sided Hilbert transform”, Contemp. Math., 430, 2007, 21–39 | DOI | MR | Zbl
[41] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 1–2, Mir, M., 1985
[42] Khelemskii A. Ya., Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004
[43] Gaposhkin V. F., “Neskolko primerov k zadache ob $\varepsilon$–ukloneniyakh dlya statsionarnykh posledovatelnostei”, TVP, 46:2 (2001), 370–375 | DOI | Zbl
[44] Bogachëv V. I., Teoriya mery, v. 1, RKhD, M.–Izhevsk, 2003
[45] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986
[46] Blank M. L., Ustoichivost i lokalizatsiya v khaoticheskoi dinamike, MTsNMO, M., 2001
[47] Lesigne E., Volný D., “Large deviations for generic stationary processes”, Colloq. Math., 84/85:1 (2000), 75–82 | MR | Zbl
[48] Sarig O., “Decay of correlations”, Handbook of Dynamical Systems, Part B, v. 1, 2006, 244–263
[49] Young L.-S., What are SRB measures, and which dynamical systems have them?, J. Stat. Phys., 108:5–6 (2002), 733–754 | DOI | MR | Zbl
[50] Liverani C., Saussol B., Vaienty S., “A probabilistic approach to intermittency”, Ergodic Theory Dynam. Systems, 19:3 (1999), 671–685 | DOI | MR | Zbl
[51] Hu H., “Decay of correlations for piecewise smooth maps with indifferent fixed points”, Ergodic Theory Dynam. Systems, 24:2 (2004), 495–524 | DOI | MR | Zbl
[52] Pollicott M., Sharp R., Yuri M., “Large deviations for maps with indifferent fixed points”, Nonlinearity, 11:4 (1998), 1173–1184 | DOI | MR
[53] Pollicott M., Sharp R., “Large deviations for intermittent maps”, Nonlinearity, 22:9 (2009), 2079–2092 | DOI | MR | Zbl
[54] Sarig O., “Subexponential decay of correlations”, Invent. Math., 150:3 (2002), 629–653 | DOI | MR | Zbl
[55] Gouëzel S., “Sharp polynomial estimates for the decay of correlations”, Israel J. Math., 139 (2004), 29–65 | DOI | MR | Zbl
[56] Markarian R., “Billiards with polynomial decay of correlations”, Ergodic Theory Dynam. Systems, 24:1 (2004), 177–197 | DOI | MR | Zbl
[57] Chernov N., Zhang H.-K., “Billiards with polynomial mixing rates”, Nonlinearity, 18:4 (2005), 1527–1553 | DOI | MR | Zbl
[58] Chernov N., Markarian R., “Dispersing billiards with cusps: slow decay of correlations”, Comm. Math. Phys., 270:3 (2007), 727–758 | DOI | MR | Zbl
[59] Chernov N., Zhang H.-K., “Improved estimates for correlations in billiards”, Comm. Math. Phys., 77:2 (2008), 305–321 | MR
[60] Chernov N., Markarian R., Chaotic billiards, Math. Surveys and Monographs, 127, AMS, Providence, RI, 2006 | DOI | MR | Zbl
[61] Troubetzkoy S., “Approximation and billiards”, Dynamical systems and Diophantine approximation, Sémin. congr., 19, Soc. Math. France, Paris, 2009, 173–185 | MR | Zbl
[62] Balint P., Melbourne I., “Decay of correlations and invariance principle for dispersing billiards with cusps, and related planar billiard flows”, J. Stat. Phys., 133:3 (2008), 435–447 | DOI | MR | Zbl
[63] Anikin V. M., Golubentsev A. F., Analiticheskie modeli determinirovannogo khaosa, Fizmatlit, M., 2007
[64] Anikin V. M., Arkadakskii C. C., Remizov A. S., “Analiticheskoe reshenie spektralnoi zadachi dlya operatora Perrona–Frobeniusa kusochno–lineinykh khaoticheskikh otobrazhenii”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 14:2 (2006), 16–34 | Zbl
[65] Parry W., “On the $\beta$-expansions of real numbers”, Acta Math. Acad. Sci. Hungar., 11:3–4 (1960), 401–416 | DOI | MR | Zbl
[66] Mayer D., Roepstorff G., “On the relaxation time of Gauss's continued–fraction map. I: The Hilbert space approach (Koopmanism)”, J. Stat. Phys., 47:1–2 (1987), 149–171 | DOI | MR | Zbl
[67] Mayer D., Roepstorff G., “On the relaxation time of Gauss's continued–fraction map. II: The Banach space approach (Transfer operator method)”, J. Stat. Phys, 50:1–2 (1988), 331–344 | DOI | MR | Zbl
[68] Antoniou I., Shkarin S., “Analyticity of smooth eigenfunctions and spectral analysis of the Gauss map”, J. Stat. Phys., 111:1–2 (2003), 355–369 | DOI | MR | Zbl
[69] Iosifescu M., Kraaikamp C., Metrical theory and continued fractions, Mathematics and its Applications, 547, Kluwer Acad. Publ., Dordrecht, 2002 | MR
[70] Waddington S., “Large deviation asymptotics for Anosov flows”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13:4 (1996), 445–484 | DOI | MR | Zbl
[71] Bressaud X., Liverani C., “Anosov diffeomorphisms and coupling”, Ergodic Theory Dynam. Systems, 22:1 (2002), 129–152 | DOI | MR | Zbl
[72] Bouen R., Metody simvolicheskoi dinamiki, Mir, M., 1979
[73] Orey L., Pelikan S., “Deviation of trajectory averages and the defect in Pesin's formula for Anosov diffeomorphisms”, Trans. AMS, 315:2 (1989), 741–753 | MR | Zbl
[74] Kifer Y., “Large deviations in dynamical systems and stochastic processes”, Trans. AMS, 321:2 (1990), 505–524 | DOI | MR | Zbl
[75] Pollicott M., Sharp R., “Large deviations, fluctuations and shrinking intervals”, Comm. Math. Phys., 290:1 (2009), 321–334 | DOI | MR | Zbl
[76] Young L.-S., “Some large deviation results for dynamical systems”, Trans. AMS, 318:2 (1990), 525–543 | MR | Zbl
[77] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1(151) (1970), 113–185
[78] Kachurovskii A. G., Podvigin I. V., “Otsenki skorosti skhodimosti v teoremakh Birkgofa i Bouena dlya potokov Anosova”, Vestnik KemGU, 47:3/1 (2011), 255–258
[79] Chernov N. I., “Markov approximations and decay of correlations for Anosov flows”, Ann. of Math., 147:2 (1998), 269–324 | DOI | MR | Zbl
[80] Dolgopyat D., “On decay of correlations in Anosov flows”, Ann. of Math., 147:2 (1998), 357–390 | DOI | MR | Zbl
[81] Dolgopyat D., “Prevalence of rapid mixing in hyperbolic flows”, Ergodic Theory Dynam. Systems, 18:5 (1998), 1097–1114 | DOI | MR | Zbl
[82] Dolgopyat D., “Prevalence of rapid mixing. II: Topological prevalence”, Ergodic Theory Dynam. Systems, 20:4 (2000), 1045–1059 | DOI | MR | Zbl
[83] Liverani C., “On contact Anosov flows”, Ann. of Math., 159:3 (2004), 1275–1312 | DOI | MR | Zbl
[84] Díaz-Ordaz K., “Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-like maps”, Discrete Contin. Dyn. Syst., 15:1 (2006), 159–176 | DOI | MR
[85] Lynch V., “Decay of correlations for non-Hölder observables”, Discrete Contin. Dyn. Syst., 16:1 (2006), 19–46 | DOI | MR | Zbl
[86] Zhang H.-K., “Decay of correlations on non-Hölder observables”, Int. J. Nonlinear Sci., 10:3 (2010), 359–369 | MR | Zbl
[87] Young L.-S., “Decay of correlations for certain quadratic maps”, Comm. Math. Phys., 146:1 (1992), 123–138 | DOI | MR | Zbl
[88] Keller G., Nowicki T., “Spectral theory, zeta functions and the distribution of periodic points for Collet–Eckmann maps”, Comm. Math. Phys., 149 (1992), 31–69 | DOI | MR | Zbl
[89] Benedicks M., Young L.-S., “Markov extensions and decay of correlations for certain Hénon maps”, Astérisque, 261, 2000, 13–56 | MR | Zbl
[90] Chernov N., “Decay of correlations and dispersing billiards”, J. Stat. Phys., 94:3–4 (1999), 513–556 | DOI | MR | Zbl
[91] Chernov N., Young L.-S., “Decay of correlations for Lorentz gases and hard balls”, Encycl. of Math. Sci., 101 (2001), 89–120 | MR
[92] Chernov N., “Advanced statistical properties of dispersing billiards”, J. Stat. Phys., 122:6 (2006), 1061–1094 | DOI | MR | Zbl
[93] Avila A., Gouëzel S., Yoccoz J.-C., “Exponential mixing for the Teichmüller flow”, Publ. Math. IHES, 104 (2006), 143–211 | DOI | MR | Zbl
[94] Athreya J. S., “Quantitative recurrence and large deviations for Teichmüller geodesic flow”, Geom. Dedicata, 119:1 (2006), 121–140 | DOI | MR | Zbl
[95] Araujo V., Bufetov A., “A large deviations bound for the Teichmuller flow on the moduli space of abelian differentials”, Ergodic Theory Dynam. Systems, 31:4 (2011), 1043–1071 | DOI | MR | Zbl