Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2015_76_2_a7, author = {L. Lerman and A. Markova}, title = {On symplectic dynamics near a homoclinic orbit to $1$-elliptic fixed point}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {309--342}, publisher = {mathdoc}, volume = {76}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a7/} }
TY - JOUR AU - L. Lerman AU - A. Markova TI - On symplectic dynamics near a homoclinic orbit to $1$-elliptic fixed point JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2015 SP - 309 EP - 342 VL - 76 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a7/ LA - en ID - MMO_2015_76_2_a7 ER -
L. Lerman; A. Markova. On symplectic dynamics near a homoclinic orbit to $1$-elliptic fixed point. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 2, pp. 309-342. http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a7/
[1] Arnold V. I., Mathematical methods of classical mechanics, Springer-Verlag, New York, 1989 | MR
[2] Arnold V., Kozlov V., Neishtadt A., “Mathematical aspects of classical and celestial mechanics”, Dynamical systems III, Springer-Verlag, Berlin, 2006 | MR
[3] Arnold V. I., Givental A. B., “Symplectic Geometry and its Applications”, Dynamical Systems IV, eds. Arnold V. I., Novikov S. P., Springer-Verlag, New York, 1990 | DOI | MR
[4] Bolotin S. V., “Homoclinic orbits to invariant tori of Hamiltonian systems”, AMS Transl. Ser. 2, 168 (1995), 21–90 | MR | Zbl
[5] Bolotin S. V., Treschev D. V., “Remarks on the definition of hyperbolic tori of Hamiltonian systems”, Regul. Chaotic Dyn., 5:4 (2000), 401–412 | DOI | MR | Zbl
[6] Celletti A., Negrini P., “Non-integrability of the problem of motion around an oblate planet”, Cel. Mech. Dynam. Astron., 61 (1995), 253–260 | DOI | MR | Zbl
[7] Conley C. C., “On the ultimate behavior of orbits with respect to an unstable critical point. I: Oscillating, asymptotic, and capture orbits”, J. Diff. Equat., 5 (1969), 136–158 | DOI | MR | Zbl
[8] Cresson J., “Symbolic dynamics and Arnold diffusion”, J. Diff. Equat., 187 (2003), 269–292 | DOI | MR | Zbl
[9] Cushman R., “Examples of nonintegrable analytic Hamiltonian vector fields with no small divisors”, Trans. AMS, 238:1 (1978), 45–55 | DOI | MR | Zbl
[10] Delshams A., Gutiérrez P., “Splitting potential and the Poincaré–Melnikov method for whiskered tori in Hamiltonian systems”, J. Nonlinear Sci., 10:4 (2000), 433–476 | DOI | MR | Zbl
[11] Delshams A., de la Llave R., Seara T. M., “Geometric properties of the scattering map of a normally hyperbolic invariant manifold”, Adv. Math., 217:3 (2008), 1096–1153 | DOI | MR | Zbl
[12] Devaney R. L., “Homoclinic orbits in Hamiltonian systems”, J. Diff. Equat., 21:2 (1976), 431–438 | DOI | MR | Zbl
[13] Easton R., “Homoclinic phenomena in Hamiltonian systems with several degrees of freedom”, J. Diff. Equat., 29 (1978), 241–252 | DOI | MR | Zbl
[14] Fenichel N., “Asymptotic stability with rate conditions”, Indiana Univ. Math. J., 23:12 (1974), 1109–1137 | DOI | MR | Zbl
[15] Fenichel N., “Asymptotic stability with rate conditions, II”, Indiana Univ. Math. J., 26:1 (1977), 81–93 | DOI | MR | Zbl
[16] Franks J., “Rotation numbers and instability sets”, Bull. AMS, 40:3 (2003), 263–279 | DOI | MR | Zbl
[17] Gonchenko S. V., Shilnikov L. P., Turaev D. V., “Elliptic periodic orbits near a homoclinic tangency in four-dimensional symplectic maps and Hamiltonian systems with three degrees of freedom”, Reg. Chaot. Dyn., 3:4 (1998), 3–26 | DOI | MR | Zbl
[18] Grotta Ragazzo C., “Nonintegrability of some Hamiltonian systems, scattering and analytic continuation”, Comm. Math. Phys., 166 (1994), 255–277 | DOI | MR | Zbl
[19] Grotta Ragazzo C., “Irregular dynamics and homoclinic orbits to Hamiltonian saddle centers”, Comm. Pure Appl. Math., 50:2 (1997), 105–147 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[20] Grotta Ragazzo C., Koiller J., Oliva W. M., “On the motion of two-dimensional vortices with mass”, J. Nonlinear Sci., 4:5 (1994), 375–418 | MR | Zbl
[21] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977 | MR | Zbl
[22] Kelley A., “The stable, center-stable, center, center-unstable, unstable manifolds”, J. Diff. Equat., 3 (1967), 546–570 | DOI | MR | Zbl
[23] Koltsova O. Yu., Lerman L. M., “Periodic and homoclinic orbits in a two-parameter unfolding of a Hamiltonian system with a homoclinic orbit to a saddle-center”, Int. J. Bifurcation Chaos, 5:2 (1995), 397–408 | DOI | MR | Zbl
[24] Koltsova O., Lerman L., “Families of transverse Poincaré homoclinic orbits in $2N$-dimensional Hamiltonian systems close to the system with a loop to a saddle-center”, Int. J. Bifurcation Chaos, 6:6 (1996), 991–1006 | DOI | MR | Zbl
[25] Koltsova O., Lerman L., Delshams A., Gutiérrez P., “Homoclinic orbits to invariant tori near a homoclinic orbit to center-center-saddle equilibrium”, Phys. D, 201:3–4 (2005), 268–290 | DOI | MR | Zbl
[26] Kozlov V. V., “Integrability and non-integrability in Hamiltonian mechanics”, Russ. Math. Surv., 38 (1983), 1–76 | DOI | MR | Zbl
[27] de la Llave R., “Some recent progress in geometric methods in the instability problem in Hamiltonian mechanics”, Intern. Congr. of Mathematicians (Madrid, Spain, 2006), v. 2, Eur. Math. Soc., Zürich, 2006, 1705–1729 | MR | Zbl
[28] Lerman L. M., “Complex dynamics and bifurcations in Hamiltonian system having the transversal homoclinic orbit to a saddle focus”, Chaos, 1:2 (1991), 174–180 | DOI | MR | Zbl
[29] J. Appl. Math. Mech., 47:3 (1983), 335–340 | DOI | MR
[30] Selecta Math. Sov., 10:3 (1991), 297–306 | MR | MR | Zbl
[31] Lidov M. L., Vashkov'yak M. A., Doubly asymptotic symmetric orbits in the plane restricted circular three-body problem, Preprint No 115, Inst. for Applied Math. of USSR Acad. of Sci., M., 1975 (in Russian)
[32] Llibre J., Martínez R., Simó C., “Tranversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near $L_2$ in the restricted three-body problem”, J. Diff. Equat., 58:1 (1985), 104–156 | DOI | MR | Zbl
[33] Melnikov V. K., “On the stability of a center for time-periodic perturbations”, Trudy Moskov. Mat. Obsch., 12, 1963, 3–52 (in Russian) | MR | Zbl
[34] Mielke A., Hamiltonian and Lagrangian flows on center manifolds, Lecture Notes in Math., 1489, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[35] Mielke A., Holmes P., O'Reilly O., “Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center”, J. Dyn. Diff. Equat., 4:1 (1992), 95–126 | DOI | MR | Zbl
[36] Moser J., Lectures on Hamiltonian systems, Memoirs of AMS, 81, 1968 | MR | Zbl
[37] Robinson C., “Horseshoes for autonomous Hamiltonian systems using the Melnikov integral”, Ergod. Theory Dyn. Syst., 8 (1988), 395–409 | DOI | MR | Zbl
[38] Rüssmann H., “Kleine Nenner I: Über invarianten Kurven differenzierbarer Abbildungen eines Kreisringes”, Nachr. Acad. Wiss. Gottingen Math. Phys. Kl. II, 1970, 67–105 | MR
[39] Smale S., “Differential dynamical systems”, Bull. AMS, 73 (1967), 747–817 | DOI | MR | Zbl
[40] Turaev D. V., Shilnikov L. P., “On Hamiltonian systems with homoclinic saddle curves”, Soviet Math. Dokl., 39 (1989), 165–168 | MR | Zbl
[41] Treshchev D., “Hyperbolic tori and asymptotic surfaces in Hamiltonian systems”, Russian J. Math. Phys., 2:1 (1994), 93–110 | MR
[42] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevsky L. P., Theory of solitons. The inverse problem method, Plenum Press, 1999