On symplectic dynamics near a homoclinic orbit to $1$-elliptic fixed point
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 2, pp. 309-342.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the orbit behavior of a four dimensional smooth symplectic diffeomorphism $f$ near a homoclinic orbit $\Gamma$ to an $1$-elliptic fixed point under some natural genericity assumptions. $1$-Elliptic fixed point has two real eigenvalues outside the unit circle and two on the unit circle. Thus there is a smooth $2$-dimensional center manifold $W^c$ where the restriction of the diffeomorphism has the elliptic fixed point supposed to be generic (no strong resonances and first Birkhoff coefficient is nonzero). Then the Moser theorem guarantees the existence of a positive measure set of KAM invariant curves. $W^c$ itself is a normally hyperbolic manifold in the whole phase space and due to Fenichel results every point on $W^c$ has $1$-dimensional stable and unstable smooth invariant curves smoothly foliating the related stable and unstable manifolds. In particular, each KAM invariant curve has stable and unstable smooth $2$-dimensional invariant manifolds being Lagrangian ones. Stable and unstable manifolds of $W^c$ are $2$-dimensional smooth manifolds which are assumed to be transverse along homoclinic orbit $\Gamma$. One of our theorems present conditions under which each KAM invariant curve on $W^c$ in a sufficiently small neighborhood of $\Gamma$ has four transverse homoclinic orbits. Another result ensures that under some Moser genericity assumption for the restriction of $f$ on $W^c$ saddle periodic orbits in resonance zone also have homoclinic orbits in the whole phase space though its transversality or tangency cannot be verified directly. All this implies the complicated dynamics of the diffeomorphism and can serve as a criterion of its nonintegrability. References: 42 entries.
@article{MMO_2015_76_2_a7,
     author = {L. Lerman and A. Markova},
     title = {On symplectic dynamics near a homoclinic orbit to $1$-elliptic fixed point},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {309--342},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a7/}
}
TY  - JOUR
AU  - L. Lerman
AU  - A. Markova
TI  - On symplectic dynamics near a homoclinic orbit to $1$-elliptic fixed point
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2015
SP  - 309
EP  - 342
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a7/
LA  - en
ID  - MMO_2015_76_2_a7
ER  - 
%0 Journal Article
%A L. Lerman
%A A. Markova
%T On symplectic dynamics near a homoclinic orbit to $1$-elliptic fixed point
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2015
%P 309-342
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a7/
%G en
%F MMO_2015_76_2_a7
L. Lerman; A. Markova. On symplectic dynamics near a homoclinic orbit to $1$-elliptic fixed point. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 2, pp. 309-342. http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a7/

[1] Arnold V. I., Mathematical methods of classical mechanics, Springer-Verlag, New York, 1989 | MR

[2] Arnold V., Kozlov V., Neishtadt A., “Mathematical aspects of classical and celestial mechanics”, Dynamical systems III, Springer-Verlag, Berlin, 2006 | MR

[3] Arnold V. I., Givental A. B., “Symplectic Geometry and its Applications”, Dynamical Systems IV, eds. Arnold V. I., Novikov S. P., Springer-Verlag, New York, 1990 | DOI | MR

[4] Bolotin S. V., “Homoclinic orbits to invariant tori of Hamiltonian systems”, AMS Transl. Ser. 2, 168 (1995), 21–90 | MR | Zbl

[5] Bolotin S. V., Treschev D. V., “Remarks on the definition of hyperbolic tori of Hamiltonian systems”, Regul. Chaotic Dyn., 5:4 (2000), 401–412 | DOI | MR | Zbl

[6] Celletti A., Negrini P., “Non-integrability of the problem of motion around an oblate planet”, Cel. Mech. Dynam. Astron., 61 (1995), 253–260 | DOI | MR | Zbl

[7] Conley C. C., “On the ultimate behavior of orbits with respect to an unstable critical point. I: Oscillating, asymptotic, and capture orbits”, J. Diff. Equat., 5 (1969), 136–158 | DOI | MR | Zbl

[8] Cresson J., “Symbolic dynamics and Arnold diffusion”, J. Diff. Equat., 187 (2003), 269–292 | DOI | MR | Zbl

[9] Cushman R., “Examples of nonintegrable analytic Hamiltonian vector fields with no small divisors”, Trans. AMS, 238:1 (1978), 45–55 | DOI | MR | Zbl

[10] Delshams A., Gutiérrez P., “Splitting potential and the Poincaré–Melnikov method for whiskered tori in Hamiltonian systems”, J. Nonlinear Sci., 10:4 (2000), 433–476 | DOI | MR | Zbl

[11] Delshams A., de la Llave R., Seara T. M., “Geometric properties of the scattering map of a normally hyperbolic invariant manifold”, Adv. Math., 217:3 (2008), 1096–1153 | DOI | MR | Zbl

[12] Devaney R. L., “Homoclinic orbits in Hamiltonian systems”, J. Diff. Equat., 21:2 (1976), 431–438 | DOI | MR | Zbl

[13] Easton R., “Homoclinic phenomena in Hamiltonian systems with several degrees of freedom”, J. Diff. Equat., 29 (1978), 241–252 | DOI | MR | Zbl

[14] Fenichel N., “Asymptotic stability with rate conditions”, Indiana Univ. Math. J., 23:12 (1974), 1109–1137 | DOI | MR | Zbl

[15] Fenichel N., “Asymptotic stability with rate conditions, II”, Indiana Univ. Math. J., 26:1 (1977), 81–93 | DOI | MR | Zbl

[16] Franks J., “Rotation numbers and instability sets”, Bull. AMS, 40:3 (2003), 263–279 | DOI | MR | Zbl

[17] Gonchenko S. V., Shilnikov L. P., Turaev D. V., “Elliptic periodic orbits near a homoclinic tangency in four-dimensional symplectic maps and Hamiltonian systems with three degrees of freedom”, Reg. Chaot. Dyn., 3:4 (1998), 3–26 | DOI | MR | Zbl

[18] Grotta Ragazzo C., “Nonintegrability of some Hamiltonian systems, scattering and analytic continuation”, Comm. Math. Phys., 166 (1994), 255–277 | DOI | MR | Zbl

[19] Grotta Ragazzo C., “Irregular dynamics and homoclinic orbits to Hamiltonian saddle centers”, Comm. Pure Appl. Math., 50:2 (1997), 105–147 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[20] Grotta Ragazzo C., Koiller J., Oliva W. M., “On the motion of two-dimensional vortices with mass”, J. Nonlinear Sci., 4:5 (1994), 375–418 | MR | Zbl

[21] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977 | MR | Zbl

[22] Kelley A., “The stable, center-stable, center, center-unstable, unstable manifolds”, J. Diff. Equat., 3 (1967), 546–570 | DOI | MR | Zbl

[23] Koltsova O. Yu., Lerman L. M., “Periodic and homoclinic orbits in a two-parameter unfolding of a Hamiltonian system with a homoclinic orbit to a saddle-center”, Int. J. Bifurcation Chaos, 5:2 (1995), 397–408 | DOI | MR | Zbl

[24] Koltsova O., Lerman L., “Families of transverse Poincaré homoclinic orbits in $2N$-dimensional Hamiltonian systems close to the system with a loop to a saddle-center”, Int. J. Bifurcation Chaos, 6:6 (1996), 991–1006 | DOI | MR | Zbl

[25] Koltsova O., Lerman L., Delshams A., Gutiérrez P., “Homoclinic orbits to invariant tori near a homoclinic orbit to center-center-saddle equilibrium”, Phys. D, 201:3–4 (2005), 268–290 | DOI | MR | Zbl

[26] Kozlov V. V., “Integrability and non-integrability in Hamiltonian mechanics”, Russ. Math. Surv., 38 (1983), 1–76 | DOI | MR | Zbl

[27] de la Llave R., “Some recent progress in geometric methods in the instability problem in Hamiltonian mechanics”, Intern. Congr. of Mathematicians (Madrid, Spain, 2006), v. 2, Eur. Math. Soc., Zürich, 2006, 1705–1729 | MR | Zbl

[28] Lerman L. M., “Complex dynamics and bifurcations in Hamiltonian system having the transversal homoclinic orbit to a saddle focus”, Chaos, 1:2 (1991), 174–180 | DOI | MR | Zbl

[29] J. Appl. Math. Mech., 47:3 (1983), 335–340 | DOI | MR

[30] Selecta Math. Sov., 10:3 (1991), 297–306 | MR | MR | Zbl

[31] Lidov M. L., Vashkov'yak M. A., Doubly asymptotic symmetric orbits in the plane restricted circular three-body problem, Preprint No 115, Inst. for Applied Math. of USSR Acad. of Sci., M., 1975 (in Russian)

[32] Llibre J., Martínez R., Simó C., “Tranversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near $L_2$ in the restricted three-body problem”, J. Diff. Equat., 58:1 (1985), 104–156 | DOI | MR | Zbl

[33] Melnikov V. K., “On the stability of a center for time-periodic perturbations”, Trudy Moskov. Mat. Obsch., 12, 1963, 3–52 (in Russian) | MR | Zbl

[34] Mielke A., Hamiltonian and Lagrangian flows on center manifolds, Lecture Notes in Math., 1489, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl

[35] Mielke A., Holmes P., O'Reilly O., “Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center”, J. Dyn. Diff. Equat., 4:1 (1992), 95–126 | DOI | MR | Zbl

[36] Moser J., Lectures on Hamiltonian systems, Memoirs of AMS, 81, 1968 | MR | Zbl

[37] Robinson C., “Horseshoes for autonomous Hamiltonian systems using the Melnikov integral”, Ergod. Theory Dyn. Syst., 8 (1988), 395–409 | DOI | MR | Zbl

[38] Rüssmann H., “Kleine Nenner I: Über invarianten Kurven differenzierbarer Abbildungen eines Kreisringes”, Nachr. Acad. Wiss. Gottingen Math. Phys. Kl. II, 1970, 67–105 | MR

[39] Smale S., “Differential dynamical systems”, Bull. AMS, 73 (1967), 747–817 | DOI | MR | Zbl

[40] Turaev D. V., Shilnikov L. P., “On Hamiltonian systems with homoclinic saddle curves”, Soviet Math. Dokl., 39 (1989), 165–168 | MR | Zbl

[41] Treshchev D., “Hyperbolic tori and asymptotic surfaces in Hamiltonian systems”, Russian J. Math. Phys., 2:1 (1994), 93–110 | MR

[42] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevsky L. P., Theory of solitons. The inverse problem method, Plenum Press, 1999