Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2015_76_2_a6, author = {I. Dynnikov and A. Skripchenko}, title = {Symmetric band complexes of thin type and chaotic sections which are not quite chaotic}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {287--308}, publisher = {mathdoc}, volume = {76}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a6/} }
TY - JOUR AU - I. Dynnikov AU - A. Skripchenko TI - Symmetric band complexes of thin type and chaotic sections which are not quite chaotic JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2015 SP - 287 EP - 308 VL - 76 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a6/ LA - en ID - MMO_2015_76_2_a6 ER -
%0 Journal Article %A I. Dynnikov %A A. Skripchenko %T Symmetric band complexes of thin type and chaotic sections which are not quite chaotic %J Trudy Moskovskogo matematičeskogo obŝestva %D 2015 %P 287-308 %V 76 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a6/ %G en %F MMO_2015_76_2_a6
I. Dynnikov; A. Skripchenko. Symmetric band complexes of thin type and chaotic sections which are not quite chaotic. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 2, pp. 287-308. http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a6/
[1] Avila A., Hubert P., Skripchenko A., On the Hausdorff dimension of the Rauzy gasket, arXiv: 1311.5361v2
[2] Arnoux P., Starosta Š., “The Rauzy gasket”, Further developments in fractals and related fields, Mathematical Foundations and Connections, Trends Math., 13, Birkhäuser/Springer, New York, 2013, 1–24 | MR
[3] Bestvina M., Feighn M., “Stable actions of groups on real trees”, Invent. Math., 121:2 (1995), 287–321 | DOI | MR | Zbl
[4] Coulbois T., “Fractal trees for irreducible automorphisms of free groups”, J. Mod. Dyn., 4:2 (2010), 359–391 | DOI | MR | Zbl
[5] Coxeter H. S. M., “Regular skew polyhedra in three and four dimensions and their topological analogues”, Proc. London Math. Soc., 43:1 (1937), 33–62 | MR
[6] De Leo R., Dynnikov I., “Geometry of plane sections of the infinite regular skew polyhedron $\{4, 6|4\}$”, Geom. Dedic., 138:1 (2009), 51–67 | DOI | MR
[7] Dynnikov I., “A proof of the conjecture of S. P. Novikov on semiclassical motion of an electron”, Math. Notes, 53:6 (1993), 495–501 | DOI | MR | Zbl
[8] Dynnikov I. A., “Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples”, Solitons, geometry, and topology: on the crossroad, AMS Transl. Ser. 2, 179, AMS, Providence, RI, 1997, 45–73 | MR
[9] Dynnikov I., “Interval identification systems and plane sections of 3-periodic surfaces”, Proceedings of the Steklov Institute of Mathematics, 263, 2008, 65–77 | DOI | MR | Zbl
[10] Dynnikov I., Skripchenko A., “On typical leaves of a measured foliated 2-complex of thin type”, Topology, geometry, integrable systems, and mathematical physics, AMS Transl. Ser. 2, 234, AMS, Providence, RI, 2014, 173–199 | MR
[11] Gaboriau D., “Dynamique des systèmes d'isométries: sur les bouts des orbits”, Invent. Math., 126:2 (1996), 297–318 | DOI | MR | Zbl
[12] Gaboriau D., Levitt G., Paulin F., “Pseudogroups of isometries of $\mathbb{R}$ and Rips' theorem on free actions on $\mathbb{R}$-trees”, Israel J. Math., 87 (1994), 403–428 | DOI | MR | Zbl
[13] Imanishi H., “On codimension one foliations defined by closed one forms with singularities”, J. Math. Kyoto Univ., 19 (1979), 285–291 | MR | Zbl
[14] Levitt G., “La dynamique des pseudogroupes de rotations”, Invent. Math., 113 (1993), 633–670 | DOI | MR | Zbl
[15] Maltsev A. Ya., “Anomalous behavior of the electrical conductivity tensor in strong magnetic fields”, JETP, 85:5 (1997), 934–942 | DOI
[16] Maltsev A. Ya., Novikov S. P., “Dynamical systems, topology, and conductivity in normal metals”, J. Stat. Phys., 115 (2004), 31–46 | DOI | MR | Zbl
[17] McMullen C. T., “Coxeter groups, Salem numbers and the Hilbert metric”, Publications Mathématiques de l'IHÉS, 95, 2002, 151–183 | DOI | MR | Zbl
[18] Russ. Math. Surv., 37:5 (1982), 1–56 | DOI | MR | Zbl
[19] Skripchenko A., “Symmetric interval identification systems of order 3”, Disc. Cont. Dyn. Syst., 32:2 (2012), 643–656 | DOI | MR | Zbl
[20] Skripchenko A., “On connectedness of chaotic sections of some 3-periodic surfaces”, Ann. Glob. Anal. Geom., 43 (2013), 253–271 | DOI | MR | Zbl
[21] Veech W. A., “Gauss measures for transformations on the space of interval exchange maps”, Ann. Math. (2), 115:1 (1982), 201–242 | DOI | MR | Zbl
[22] Viana M., “Ergodic theory of interval exchange maps”, Rev. Mat. Complut., 19:1 (2006), 7–100 | DOI | MR | Zbl
[23] Zorich A., “A Problem of Novikov on the semiclassical motion of an electron in a uniform almost rational magnetic field”, Russ. Math. Surv., 39:5 (1984), 287–288 | DOI | MR | Zbl
[24] Zorich A., “Asymptotic flag of an orientable measured foliation”, Séminaire de théorie spectrale et géométrie, 11, 1992–1993, 113–131 | DOI | MR
[25] Zorich A., How do the leaves of a closed 1-form wind around a surface?, Pseudoperiodic topology, AMS Transl. Ser. 2, 197, AMS, Providence, RI, 1999, 135–178 | MR