Ramified covers and tame isomonodromic solutions on curves
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 2, pp. 249-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the possibility of constructing isomonodromic deformations by ramified covers. We give new examples and prove a classification result. References: 27 entries.
@article{MMO_2015_76_2_a4,
     author = {K. Diarra and F. Loray},
     title = {Ramified covers and tame isomonodromic solutions on curves},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {249--269},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a4/}
}
TY  - JOUR
AU  - K. Diarra
AU  - F. Loray
TI  - Ramified covers and tame isomonodromic solutions on curves
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2015
SP  - 249
EP  - 269
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a4/
LA  - en
ID  - MMO_2015_76_2_a4
ER  - 
%0 Journal Article
%A K. Diarra
%A F. Loray
%T Ramified covers and tame isomonodromic solutions on curves
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2015
%P 249-269
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a4/
%G en
%F MMO_2015_76_2_a4
K. Diarra; F. Loray. Ramified covers and tame isomonodromic solutions on curves. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 2, pp. 249-269. http://geodesic.mathdoc.fr/item/MMO_2015_76_2_a4/

[1] Andreev F. V., Kitaev A. V., “Transformations $RS^2_4(3)$ of the ranks $\leqslant4$ and algebraic solutions of the sixth Painlevé equation”, Comm. Math. Phys., 228:1 (2002), 151–176 | DOI | MR | Zbl

[2] Boalch P., “Towards a non-linear Schwarz's list”, The many facets of geometry, Oxford Univ. Press, Oxford, 2010, 210–236 | DOI | MR | Zbl

[3] Bolibrukh A. A., “The Riemann–Hilbert problem”, Russian Math. Surveys, 45:2 (1990), 1–58 | DOI | MR | Zbl

[4] Cantat S., Loray F., “Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation”, Ann. Inst. Fourier (Grenoble), 59:7 (2009), 2927–2978 | DOI | MR | Zbl

[5] Diarra K., “Construction et classification de certaines solutions algébriques des systèmes de Garnier”, Bull. Braz. Math. Soc. (N.S.), 44:1 (2013), 129–154 | DOI | MR | Zbl

[6] Diarra K., “Solutions algébriques partielles des équations isomonodromiques sur les courbes de genre 2”, Ann. Fac. Sci. Toulouse Math. (6), 24:1 (2015), 39–54 | DOI | MR | Zbl

[7] Doran C. F., “Algebraic and geometric isomonodromic deformations”, J. Diff. Geom., 59:1 (2001), 33–85 | MR | Zbl

[8] Dubrovin B., Mazzocco M., “On the reductions and classical solutions of the Schlesinger equations”, Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys., 9, Eur. Math. Soc., Zürich, 2007, 157–187 | MR

[9] Heu V., “Universal isomonodromic deformations of meromorphic rank 2 connections on curves”, Ann. Inst. Fourier (Grenoble), 60:2 (2010), 515–549 | DOI | MR | Zbl

[10] Heu V., Loray F., Flat rank 2 vector bundles on genus 2 curves, arXiv: 1401.2449 [math.AG]

[11] Hitchin N., “Twistor spaces, Einstein metrics and isomonodromic deformations”, J. Diff. Geom., 42:1 (1995), 30–112 | MR | Zbl

[12] Kitaev A. V., “Quadratic transformations for the sixth Painlevé equation”, Lett. Math. Phys., 21:2 (1991), 105–111 | DOI | MR | Zbl

[13] Krichever I. M., “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”, Mosc. Math. J., 2:4 (2002), 717–752 | MR | Zbl

[14] Lisovyy O., Tykhyy Y., Algebraic solutions of the sixth Painlevé equation, 2008, arXiv: 0809.4873v2 | MR

[15] Loray F., van der Put M., Ulmer F., “The Lamé family of connections on the projective line”, Ann. Fac. Sci. Toulouse Math. (6), 17:2 (2008), 371–409 | DOI | MR | Zbl

[16] Loray F., “Okamoto symmetry of Painlevé VI equation and isomonodromic deformation of Lamé connections”, Algebraic, analytic and geometric aspects of complex differential equations and their deformations. Painlevé hierarchies, RIMS Kôkyûroku Bessatsu, B2, Res. Inst. Math. Sci., Kyoto, 2007, 129–136 | MR

[17] Loray F., Isomonodromic deformation of Lamé connections, Painlevé VI equation and Okamoto symmetry, 2014, arXiv: 1410.4976 [math.AG]

[18] Machu F.-X., “Monodromy of a class of logarithmic connections on an elliptic curve”, SIGMA, 3 (2007), 082 | MR | Zbl

[19] Manin Yu. I., “Sixth Painlevé equation, universal elliptic curve and mirror of $\mathbb{P}^2$”, Geometry of differential equations, AMS Transl. Ser. 2, 186, AMS, Providence, RI, 1998, 131–151 | MR

[20] Mazzocco M., “Picard and Chazy solutions to the Painlevé VI equation”, Math. Ann., 321 (2001), 157–195 | DOI | MR | Zbl

[21] Mazzocco M., “The geometry of the classical solutions of the Garnier systems”, Int. Math. Res. Not., 2002, no. 12, 613–646 | DOI | MR | Zbl

[22] Mazzocco M., Vidunas R., “Cubic and quartic transformations of the sixth Painlevé equation in terms of Riemann–Hilbert correspondence”, Stud. Appl. Math., 130:1 (2013), 17–48 | DOI | MR | Zbl

[23] Okamoto K., “Isomonodromic deformation and Painlevé equations, and the Garnier system”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33:3 (1986), 575–618 | MR | Zbl

[24] Okamoto K., Kimura H., “On particular solutions of the Garnier systems and the hypergeometric functions of several variables”, Quart. J. Math. Oxford. Ser. (2), 37:1 (1986), 61–80 | DOI | MR | Zbl

[25] Simpson C. T., “Moduli of representations of the fundamental group of a smooth projective variety, II”, IHÉS. Publ. Math., 80, 1994, 5–79 | DOI | MR

[26] Tsuda T., Okamoto K., Sakai H., “Folding transformations of the Painlevé equations”, Math. Ann., 331:4 (2005), 713–738 | DOI | MR | Zbl

[27] Watanabe H., “Birational canonical transformations and classical solutions of the sixth Painlevé equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27:3–4 (1998), 379–425 | MR | Zbl