Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2015_76_1_a0, author = {S. A. Nazarov}, title = {Asymptotics of the eigenvalues of boundary value problems for the {Laplace} operator in a three-dimensional domain with a thin closed tube}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {1--66}, publisher = {mathdoc}, volume = {76}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2015_76_1_a0/} }
TY - JOUR AU - S. A. Nazarov TI - Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2015 SP - 1 EP - 66 VL - 76 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2015_76_1_a0/ LA - ru ID - MMO_2015_76_1_a0 ER -
%0 Journal Article %A S. A. Nazarov %T Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube %J Trudy Moskovskogo matematičeskogo obŝestva %D 2015 %P 1-66 %V 76 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2015_76_1_a0/ %G ru %F MMO_2015_76_1_a0
S. A. Nazarov. Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 1, pp. 1-66. http://geodesic.mathdoc.fr/item/MMO_2015_76_1_a0/
[1] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob asimptotike reshenii ellipticheskikh kraevykh zadach pri neregulyarnom vozmuschenii oblasti”, Problemy matem. analiza, 8, 1981, 72–153 | Zbl
[2] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Birkhäuser Verlag, Basel, 2000 | MR
[3] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR
[4] Campbell A., Nazarov S. A., “Une justification de la méthode de raccordement des développements asymptotiques appliquée à un problème de plaque en flexion. Estimation de la matrice d'impedance”, J. Math. Pures Appl., 76:1 (1997), 15–54 | DOI | MR | Zbl
[5] Campbell A., Nazarov S. A., “An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance”, RAIRO Model. Math. Anal. Numer., 32:5 (1998), 579–610 | MR | Zbl
[6] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962
[7] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR
[8] Nazarov S. A., “Asimptotika sobstvennykh chisel zadachi Neimana pri kontsentratsii mass na tonkom toroidalnom mnozhestve”, Vestnik SPbGU. Ser. 1, 2006, no. 3, 43–53
[9] Fedoryuk M. V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Tr. sem. S. L. Soboleva, 1, 1980, 113–131 | Zbl
[10] Fedoryuk M. V., “Asimptotika resheniya zadachi Dirikhle dlya uravnenii Laplasa i Gelmgoltsa vo vneshnosti tonkogo tsilindra”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 167–186 | MR | Zbl
[11] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob asimptotike reshenii zadachi Dirikhle v trekhmernoi oblasti s vyrezannym tonkim telom”, Doklady AN SSSR, 256:1 (1981), 37–39 | MR | Zbl
[12] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptotika reshenii zadachi Dirikhle v oblasti s vyrezannoi tonkoi trubkoi”, Matem. sb., 116:2 (1981), 187–217 | MR | Zbl
[13] Zorin I. S., Nazarov S. A., “Napryazhenno-deformirovannoe sostoyanie uprugogo prostranstva s tonkim toroidalnym vklyucheniem”, Mekhanika tverdogo tela, 1985, no. 3, 79–86 | MR
[14] Nazarov S. A., “Osrednenie kraevykh zadach v oblasti, soderzhaschei tonkuyu polost s periodicheski izmenyayuschimsya secheniem”, Tr. MMO, 53, 1990, 98–129
[15] Nazarov S. A.., Paukshto M. V., Diskretnye modeli i osrednenie v zadachakh teorii uprugosti, Izd-vo LGU, L., 1984
[16] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob odnorodnykh resheniyakh zadachi Dirikhle vo vneshnosti tonkogo konusa”, Doklady AN SSSR, 266:2 (1982), 281–284 | MR
[17] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob osobennostyakh reshenii zadachi Dirikhle vo vneshnosti tonkogo konusa”, Matem. sb., 122:4 (1983), 435–457 | MR | Zbl
[18] Movchan N. V., “Kolebaniya uprugikh tel s malymi otverstiyami”, Vestnik LGU, 1989, no. 1, 33–37 | MR
[19] Campbell A., Nazarov S. A., “Asymptotics of eigenvalues of a plate with small clamped zone”, Positivity, 5:3 (2001), 275–295 | DOI | MR | Zbl
[20] Sánchez-Palencia E., “Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses”, Lect. Notes Phys., 195, 1984, 346–368 | DOI | MR | Zbl
[21] Sánchez-Palencia E., Suquet P., “Friction and homogenization of a boundary”, Free Boundary Problems: theory and applications, Pitman, London, 1983, 561–571 | MR
[22] Oleinik O. A., Sanchez-Hubert J., Yosifian G. A., “On vibrations of a membrane with concentrated masses”, Bull. Sci. Math., 115:1 (1991), 1–27 | MR | Zbl
[23] Nazarov S. A., “Ob odnoi zadache Sanches-Palensiya s kraevymi usloviyami Neimana”, Izv. vuzov. Matem., 1989, no. 11, 60–66
[24] Golovatyi Yu. D., Nazarov S. A., Oleinik O. A., “Asimptoticheskie razlozheniya sobstvennykh znachenii i sobstvennykh funktsii zadach o kolebaniyakh sredy s kontsentrirovannymi vozmuscheniyami”, Tr. MIAN, 192, 1990, 42–60
[25] Nazarov S. A., “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Model. Math. Anal. Numer., 27:6 (1993), 777–799 | MR | Zbl
[26] Caínzos J., Pérez E., Vilasánchez M., “Asymptotics for the eigenelements of the Neumann spectral problem with concentrated masses”, Indiana Univ. Math. J., 56:4 (2007), 1939–1987 | DOI | MR
[27] Lobo M., Pérez E., “Local problems for vibrating systems with concentrated masses: a review”, C. R. Mecanique, 331:4 (2003), 303–317 | DOI | Zbl
[28] Sánchez-Palencia E., Nonhomogeneous media and vibration theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin–New York, 1980 | MR
[29] Sanchez-Hubert J., Sanchez-Palencia E., Vibration and coupling of continuous systems. Asymptotic methods, Springer Verlag, Heidelberg, 1989 | MR | Zbl
[30] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh sred, Izd-vo MGU, M., 1990
[31] Nazarov S. A., Plamenevskii B. A., “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186
[32] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR
[33] Smirnov V. I., Kurs vysshei matematiki, v. 2, Nauka, M., 1967
[34] Nagel Yu., “Ob ekvivalentnykh normirovkakh v funktsionalnykh prostranstvakh $H^\mu$”, Vestnik LGU, 1974, no. 7, 41–47
[35] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR
[36] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR
[37] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971
[38] Mazya V. G., Plamenevskii B. A., “Ob elliptichnosti kraevykh zadach v oblastyakh s kusochno gladkoi granitsei”, Tr. simpoziuma po mekh. sploshnykh sred i rodstvennym probl. analiza, v. 1, Metsniereba, Tbilisi, 1973, 171–181
[39] Kondratev V. A., “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Diff. uravneniya, 13:11 (1977), 2026–2032 | MR | Zbl
[40] Nikishkin V. A., “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Vestnik Mosk. un-ta, 1979, no. 2, 51–62
[41] Maz'ja V. G., Rossmann J., “Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten”, Math. Nachr., 138 (1988), 27–53 | DOI | MR
[42] Nazarov S. A., Plamenevskii B. A., “Samosopryazhennye ellipticheskie zadachi s usloviyami izlucheniya na rebrakh granitsy”, Algebra i analiz, 4:3 (1992), 196–225 | Zbl
[43] Nazarov S. A., Plamenevskii B. A., “Ellipticheskie zadachi s usloviyami izlucheniya na rebrakh granitsy”, Matem. sb., 183:10 (1992), 13–44
[44] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, 1963, 209–292
[45] Pazy A., “Asymptotic expansions of solutions of ordinary differential equations in Hilbert space”, Arch. Rational Mech. Anal., 24 (1967), 193–218 | DOI | MR | Zbl
[46] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | DOI | MR | Zbl
[47] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971
[48] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[49] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya v oblasti s uzkoi schelyu. II: Oblast s malym otverstiem”, Matem. sb., 103:2 (1977), 265–284 | MR | Zbl
[50] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR
[51] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967
[52] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[53] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl
[54] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei, v. 1, Ponizhenie razmernosti i integralnye otsenki, Nauchn. kniga, Novosibirsk, 2001
[55] Aleksandrov A. D., Netsvetaev N. Yu., Geometriya, Nauka, M., 1990
[56] Kamotskii I. V., Nazarov S. A., “O sobstvennykh funktsiyakh, lokalizovannykh okolo kromki tonkoi oblasti”, Problemy matem. analiza, 19, 1999, 105–148 | MR
[57] Nazarov S. A., “Localization effects for eigenfunctions near to the edge of a thin domain”, Mathematica Bohemica, 127:2 (2002), 283–292 | MR | Zbl
[58] Friedlander L., Solomyak M., “On the spectrum of narrow periodic waveguides”, Russ. J. Math. Physics, 15:2 (2008), 238–242 | DOI | MR | Zbl
[59] Borisov D., Freitas P., “Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin planar domains”, Ann. Inst. H. Poincaré Analyse non-linéaire, 26:2 (2009), 547–560 | DOI | MR | Zbl
[60] Nazarov S. A., “Spektralnye svoistva tonkogo sloya s dvoyakoperiodicheskim semeistvom istonchenii”, TMF, 174:3 (2013), 398–415 | DOI | Zbl
[61] Nazarov S. A., “Okolovershinnaya lokalizatsiya sobstvennykh funktsii zadachi Dirikhle v tonkikh mnogogrannikakh”, Sib. matem. zhurn., 54:3 (2013), 655–672 | MR | Zbl
[62] Nazarov S. A., Pérez E., “New asymptotic effects for the spectrum of problems on concentrated masses near the boundary”, C. R. Mécanique, 337:8 (2009), 585–590 | DOI