Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 1, pp. 1-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and justify asymptotic representations for the eigenvalues and eigenfunctions of boundary value problems for the Laplace operator in a three-dimensional domain $ \Omega (\varepsilon )=\Omega \setminus \overline {\Gamma }_\varepsilon $ with a thin singular set $ \Gamma _\varepsilon $ lying in the $ c\varepsilon $-neighborhood of a simple smooth closed contour $ \Gamma $. We consider the Dirichlet problem, a mixed boundary value problem with the Neumann conditions on $ \partial \Gamma _\varepsilon $, and also a spectral problem with lumped masses on $ \Gamma _\varepsilon $. The asymptotic representations are of diverse character: we find an asymptotic series in powers of the parameter $ \vert{\ln \varepsilon }\vert^{-1}$ or $ \varepsilon $. The most comprehensive and complicated analysis is presented for the lumped mass problem; namely, we sum the series in powers of $ \vert{\ln \varepsilon }\vert^{-1}$ and obtain an asymptotic expansion with the leading term holomorphically depending on $ \vert{\ln \varepsilon }\vert^{-1}$ and with the remainder $ O(\varepsilon ^\delta )$, $ \delta \in (0,1)$. The main role in asymptotic formulas is played by solutions of the Dirichlet problem in $ \Omega \setminus \Gamma $ with logarithmic singularities distributed along the contour $ \Gamma $.
@article{MMO_2015_76_1_a0,
     author = {S. A. Nazarov},
     title = {Asymptotics of the eigenvalues of boundary value problems for the {Laplace} operator in a three-dimensional domain with a thin closed tube},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {1--66},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2015_76_1_a0/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2015
SP  - 1
EP  - 66
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2015_76_1_a0/
LA  - ru
ID  - MMO_2015_76_1_a0
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2015
%P 1-66
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2015_76_1_a0/
%G ru
%F MMO_2015_76_1_a0
S. A. Nazarov. Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 1, pp. 1-66. http://geodesic.mathdoc.fr/item/MMO_2015_76_1_a0/

[1] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob asimptotike reshenii ellipticheskikh kraevykh zadach pri neregulyarnom vozmuschenii oblasti”, Problemy matem. analiza, 8, 1981, 72–153 | Zbl

[2] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Birkhäuser Verlag, Basel, 2000 | MR

[3] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR

[4] Campbell A., Nazarov S. A., “Une justification de la méthode de raccordement des développements asymptotiques appliquée à un problème de plaque en flexion. Estimation de la matrice d'impedance”, J. Math. Pures Appl., 76:1 (1997), 15–54 | DOI | MR | Zbl

[5] Campbell A., Nazarov S. A., “An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance”, RAIRO Model. Math. Anal. Numer., 32:5 (1998), 579–610 | MR | Zbl

[6] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962

[7] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR

[8] Nazarov S. A., “Asimptotika sobstvennykh chisel zadachi Neimana pri kontsentratsii mass na tonkom toroidalnom mnozhestve”, Vestnik SPbGU. Ser. 1, 2006, no. 3, 43–53

[9] Fedoryuk M. V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Tr. sem. S. L. Soboleva, 1, 1980, 113–131 | Zbl

[10] Fedoryuk M. V., “Asimptotika resheniya zadachi Dirikhle dlya uravnenii Laplasa i Gelmgoltsa vo vneshnosti tonkogo tsilindra”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 167–186 | MR | Zbl

[11] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob asimptotike reshenii zadachi Dirikhle v trekhmernoi oblasti s vyrezannym tonkim telom”, Doklady AN SSSR, 256:1 (1981), 37–39 | MR | Zbl

[12] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptotika reshenii zadachi Dirikhle v oblasti s vyrezannoi tonkoi trubkoi”, Matem. sb., 116:2 (1981), 187–217 | MR | Zbl

[13] Zorin I. S., Nazarov S. A., “Napryazhenno-deformirovannoe sostoyanie uprugogo prostranstva s tonkim toroidalnym vklyucheniem”, Mekhanika tverdogo tela, 1985, no. 3, 79–86 | MR

[14] Nazarov S. A., “Osrednenie kraevykh zadach v oblasti, soderzhaschei tonkuyu polost s periodicheski izmenyayuschimsya secheniem”, Tr. MMO, 53, 1990, 98–129

[15] Nazarov S. A.., Paukshto M. V., Diskretnye modeli i osrednenie v zadachakh teorii uprugosti, Izd-vo LGU, L., 1984

[16] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob odnorodnykh resheniyakh zadachi Dirikhle vo vneshnosti tonkogo konusa”, Doklady AN SSSR, 266:2 (1982), 281–284 | MR

[17] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob osobennostyakh reshenii zadachi Dirikhle vo vneshnosti tonkogo konusa”, Matem. sb., 122:4 (1983), 435–457 | MR | Zbl

[18] Movchan N. V., “Kolebaniya uprugikh tel s malymi otverstiyami”, Vestnik LGU, 1989, no. 1, 33–37 | MR

[19] Campbell A., Nazarov S. A., “Asymptotics of eigenvalues of a plate with small clamped zone”, Positivity, 5:3 (2001), 275–295 | DOI | MR | Zbl

[20] Sánchez-Palencia E., “Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses”, Lect. Notes Phys., 195, 1984, 346–368 | DOI | MR | Zbl

[21] Sánchez-Palencia E., Suquet P., “Friction and homogenization of a boundary”, Free Boundary Problems: theory and applications, Pitman, London, 1983, 561–571 | MR

[22] Oleinik O. A., Sanchez-Hubert J., Yosifian G. A., “On vibrations of a membrane with concentrated masses”, Bull. Sci. Math., 115:1 (1991), 1–27 | MR | Zbl

[23] Nazarov S. A., “Ob odnoi zadache Sanches-Palensiya s kraevymi usloviyami Neimana”, Izv. vuzov. Matem., 1989, no. 11, 60–66

[24] Golovatyi Yu. D., Nazarov S. A., Oleinik O. A., “Asimptoticheskie razlozheniya sobstvennykh znachenii i sobstvennykh funktsii zadach o kolebaniyakh sredy s kontsentrirovannymi vozmuscheniyami”, Tr. MIAN, 192, 1990, 42–60

[25] Nazarov S. A., “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Model. Math. Anal. Numer., 27:6 (1993), 777–799 | MR | Zbl

[26] Caínzos J., Pérez E., Vilasánchez M., “Asymptotics for the eigenelements of the Neumann spectral problem with concentrated masses”, Indiana Univ. Math. J., 56:4 (2007), 1939–1987 | DOI | MR

[27] Lobo M., Pérez E., “Local problems for vibrating systems with concentrated masses: a review”, C. R. Mecanique, 331:4 (2003), 303–317 | DOI | Zbl

[28] Sánchez-Palencia E., Nonhomogeneous media and vibration theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin–New York, 1980 | MR

[29] Sanchez-Hubert J., Sanchez-Palencia E., Vibration and coupling of continuous systems. Asymptotic methods, Springer Verlag, Heidelberg, 1989 | MR | Zbl

[30] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh sred, Izd-vo MGU, M., 1990

[31] Nazarov S. A., Plamenevskii B. A., “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186

[32] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR

[33] Smirnov V. I., Kurs vysshei matematiki, v. 2, Nauka, M., 1967

[34] Nagel Yu., “Ob ekvivalentnykh normirovkakh v funktsionalnykh prostranstvakh $H^\mu$”, Vestnik LGU, 1974, no. 7, 41–47

[35] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[36] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR

[37] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[38] Mazya V. G., Plamenevskii B. A., “Ob elliptichnosti kraevykh zadach v oblastyakh s kusochno gladkoi granitsei”, Tr. simpoziuma po mekh. sploshnykh sred i rodstvennym probl. analiza, v. 1, Metsniereba, Tbilisi, 1973, 171–181

[39] Kondratev V. A., “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Diff. uravneniya, 13:11 (1977), 2026–2032 | MR | Zbl

[40] Nikishkin V. A., “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Vestnik Mosk. un-ta, 1979, no. 2, 51–62

[41] Maz'ja V. G., Rossmann J., “Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten”, Math. Nachr., 138 (1988), 27–53 | DOI | MR

[42] Nazarov S. A., Plamenevskii B. A., “Samosopryazhennye ellipticheskie zadachi s usloviyami izlucheniya na rebrakh granitsy”, Algebra i analiz, 4:3 (1992), 196–225 | Zbl

[43] Nazarov S. A., Plamenevskii B. A., “Ellipticheskie zadachi s usloviyami izlucheniya na rebrakh granitsy”, Matem. sb., 183:10 (1992), 13–44

[44] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, 1963, 209–292

[45] Pazy A., “Asymptotic expansions of solutions of ordinary differential equations in Hilbert space”, Arch. Rational Mech. Anal., 24 (1967), 193–218 | DOI | MR | Zbl

[46] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | DOI | MR | Zbl

[47] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[48] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[49] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya v oblasti s uzkoi schelyu. II: Oblast s malym otverstiem”, Matem. sb., 103:2 (1977), 265–284 | MR | Zbl

[50] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[51] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[52] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[53] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[54] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei, v. 1, Ponizhenie razmernosti i integralnye otsenki, Nauchn. kniga, Novosibirsk, 2001

[55] Aleksandrov A. D., Netsvetaev N. Yu., Geometriya, Nauka, M., 1990

[56] Kamotskii I. V., Nazarov S. A., “O sobstvennykh funktsiyakh, lokalizovannykh okolo kromki tonkoi oblasti”, Problemy matem. analiza, 19, 1999, 105–148 | MR

[57] Nazarov S. A., “Localization effects for eigenfunctions near to the edge of a thin domain”, Mathematica Bohemica, 127:2 (2002), 283–292 | MR | Zbl

[58] Friedlander L., Solomyak M., “On the spectrum of narrow periodic waveguides”, Russ. J. Math. Physics, 15:2 (2008), 238–242 | DOI | MR | Zbl

[59] Borisov D., Freitas P., “Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin planar domains”, Ann. Inst. H. Poincaré Analyse non-linéaire, 26:2 (2009), 547–560 | DOI | MR | Zbl

[60] Nazarov S. A., “Spektralnye svoistva tonkogo sloya s dvoyakoperiodicheskim semeistvom istonchenii”, TMF, 174:3 (2013), 398–415 | DOI | Zbl

[61] Nazarov S. A., “Okolovershinnaya lokalizatsiya sobstvennykh funktsii zadachi Dirikhle v tonkikh mnogogrannikakh”, Sib. matem. zhurn., 54:3 (2013), 655–672 | MR | Zbl

[62] Nazarov S. A., Pérez E., “New asymptotic effects for the spectrum of problems on concentrated masses near the boundary”, C. R. Mécanique, 337:8 (2009), 585–590 | DOI