Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 1, pp. 1-66

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and justify asymptotic representations for the eigenvalues and eigenfunctions of boundary value problems for the Laplace operator in a three-dimensional domain $ \Omega (\varepsilon )=\Omega \setminus \overline {\Gamma }_\varepsilon $ with a thin singular set $ \Gamma _\varepsilon $ lying in the $ c\varepsilon $-neighborhood of a simple smooth closed contour $ \Gamma $. We consider the Dirichlet problem, a mixed boundary value problem with the Neumann conditions on $ \partial \Gamma _\varepsilon $, and also a spectral problem with lumped masses on $ \Gamma _\varepsilon $. The asymptotic representations are of diverse character: we find an asymptotic series in powers of the parameter $ \vert{\ln \varepsilon }\vert^{-1}$ or $ \varepsilon $. The most comprehensive and complicated analysis is presented for the lumped mass problem; namely, we sum the series in powers of $ \vert{\ln \varepsilon }\vert^{-1}$ and obtain an asymptotic expansion with the leading term holomorphically depending on $ \vert{\ln \varepsilon }\vert^{-1}$ and with the remainder $ O(\varepsilon ^\delta )$, $ \delta \in (0,1)$. The main role in asymptotic formulas is played by solutions of the Dirichlet problem in $ \Omega \setminus \Gamma $ with logarithmic singularities distributed along the contour $ \Gamma $.
@article{MMO_2015_76_1_a0,
     author = {S. A. Nazarov},
     title = {Asymptotics of the eigenvalues of boundary value problems for the {Laplace} operator in a three-dimensional domain with a thin closed tube},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {1--66},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2015_76_1_a0/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2015
SP  - 1
EP  - 66
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2015_76_1_a0/
LA  - ru
ID  - MMO_2015_76_1_a0
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2015
%P 1-66
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2015_76_1_a0/
%G ru
%F MMO_2015_76_1_a0
S. A. Nazarov. Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 76 (2015) no. 1, pp. 1-66. http://geodesic.mathdoc.fr/item/MMO_2015_76_1_a0/