Uniform convexity and variational convergence
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 245-276

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $ \Omega $ be a domain in $ \mathbb{R}^d$. We establish the uniform convexity of the $ \Gamma $-limit of a sequence of Carathéodory integrands $ f(x,\xi )\colon \Omega { \times }\mathbb{R}^d\to \mathbb{R}$ subjected to a two-sided power-law estimate of coercivity and growth with respect to $ \xi $ with exponents $ \alpha $ and $ \beta $, $ 1\alpha \le \beta \infty $, and having a common modulus of convexity with respect to $ \xi $. In particular, the $ \Gamma $-limit of a sequence of power-law integrands of the form $ \vert\xi \vert^{p(x)}$, where the variable exponent $ p\colon \Omega \to [\alpha ,\beta ]$ is a measurable function, is uniformly convex. We prove that one can assign a uniformly convex Orlicz space to the $ \Gamma $-limit of a sequence of power-law integrands. A natural $ \Gamma $-closed extension of the class of power-law integrands is found. Applications to the homogenization theory for functionals of the calculus of variations and for monotone operators are given.
@article{MMO_2014_75_2_a8,
     author = {V. V. Zhikov and S. E. Pastukhova},
     title = {Uniform convexity and variational convergence},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {245--276},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a8/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - S. E. Pastukhova
TI  - Uniform convexity and variational convergence
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2014
SP  - 245
EP  - 276
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a8/
LA  - ru
ID  - MMO_2014_75_2_a8
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A S. E. Pastukhova
%T Uniform convexity and variational convergence
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2014
%P 245-276
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a8/
%G ru
%F MMO_2014_75_2_a8
V. V. Zhikov; S. E. Pastukhova. Uniform convexity and variational convergence. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 245-276. http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a8/