Uniform convexity and variational convergence
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 245-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $ \Omega $ be a domain in $ \mathbb{R}^d$. We establish the uniform convexity of the $ \Gamma $-limit of a sequence of Carathéodory integrands $ f(x,\xi )\colon \Omega { \times }\mathbb{R}^d\to \mathbb{R}$ subjected to a two-sided power-law estimate of coercivity and growth with respect to $ \xi $ with exponents $ \alpha $ and $ \beta $, $ 1\alpha \le \beta \infty $, and having a common modulus of convexity with respect to $ \xi $. In particular, the $ \Gamma $-limit of a sequence of power-law integrands of the form $ \vert\xi \vert^{p(x)}$, where the variable exponent $ p\colon \Omega \to [\alpha ,\beta ]$ is a measurable function, is uniformly convex. We prove that one can assign a uniformly convex Orlicz space to the $ \Gamma $-limit of a sequence of power-law integrands. A natural $ \Gamma $-closed extension of the class of power-law integrands is found. Applications to the homogenization theory for functionals of the calculus of variations and for monotone operators are given.
@article{MMO_2014_75_2_a8,
     author = {V. V. Zhikov and S. E. Pastukhova},
     title = {Uniform convexity and variational convergence},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {245--276},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a8/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - S. E. Pastukhova
TI  - Uniform convexity and variational convergence
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2014
SP  - 245
EP  - 276
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a8/
LA  - ru
ID  - MMO_2014_75_2_a8
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A S. E. Pastukhova
%T Uniform convexity and variational convergence
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2014
%P 245-276
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a8/
%G ru
%F MMO_2014_75_2_a8
V. V. Zhikov; S. E. Pastukhova. Uniform convexity and variational convergence. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 245-276. http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a8/

[1] Clarkson J. A., “Uniformly convex spaces”, Trans. AMS, 40:3 (1936), 396–414 | DOI | MR

[2] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[3] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[4] Diestel J., Geometry of Banach spaces-selected topics, Springer-Verlag, Berlin–Heidelberg, 1975 | MR | Zbl

[5] Lindenstrauss J., Tzafriri L., Classical Banach spaces, Springer-Verlag, Berlin–Heidelberg, 1996 | MR | Zbl

[6] Zhikov V. V., “O perekhode k predelu v nelineinykh variatsionnykh zadachakh”, Matem. sb., 183:8 (1992), 47–84

[7] Zhikov V. V., “O variatsionnykh zadachakh i nelineinykh uravneniyakh s nestandartnymi usloviyami rosta”, Problemy matem. analiza, 54 (2011), 23–112 | Zbl

[8] Braides A., $\Gamma$-convergence for beginners, Oxford University Press, 2002 | MR | Zbl

[9] Zhikov V. V., “Effekt Lavrenteva i usrednenie nelineinykh variatsionnykh zadach”, Diff. uravneniya, 27:1 (1991), 42–50 | MR | Zbl

[10] Pastukhova S. E., Khripunova A. S., “Nekotorye varianty printsipa kompensirovannoi kompaktnosti”, Matem. sb., 202:9 (2011), 135–160 | DOI | MR

[11] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[12] Pastukhova S. E., Khripunova A. S., “O Gamma-zamykanii nekotorykh klassov nestandartnykh vypuklykh integrantov”, Problemy matem. analiza, 59 (2011), 73–94 | MR | Zbl

[13] Diening L., Harjulehto P., Hästö P., Ru̇žička M., Lebesgue and Sobolev spaces with variable exponents, Lect. Notes Math., 2017, Springer-Verlag, Berlin, 2011 | DOI | MR | Zbl

[14] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[15] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[16] Zhikov V. V., Pastukhova S. E., “O $\Gamma$-skhodimosti ostsilliruyuschikh integrantov s nestandartnymi usloviyami koertsitivnosti i rosta”, Matem. sb., 205:4 (2014), 33–68 | DOI | Zbl

[17] Zhikov V. V., Pastukhova S. E., “O $\Gamma$-skhodimosti integrantov s nestandartnymi usloviyami koertsitivnosti i rosta”, Problemy matem. analiza, 74 (2013), 85–108

[18] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[19] Zhikov V. V., Pastukhova S. E., “Usrednenie monotonnykh operatorov s usloviyami koertsitivnosti i rosta peremennogo poryadka”, Matem. zametki, 90:1 (2011), 53–69 | DOI | MR | Zbl