Riesz basis property of Hill operators with potentials in weighted spaces
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 181-204

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the Hill operator $L(v)=-d^2/dx^2+v(x)$ on $[0,\pi]$ with Dirichlet, periodic or antiperiodic boundary conditions; then for large enough $n$ close to $n^2$ there are one Dirichlet eigenvalue $\mu_n$ and two periodic (if $n$ is even) or antiperiodic (if $n$ is odd) eigenvalues $\lambda_n^-$, $\lambda_n^+$ (counted with multiplicity). We describe classes of complex potentials $v(x)=\sum_{2\mathbb{Z}}V(k)e^{ikx}$ in weighted spaces (defined in terms of the Fourier coefficients of $v$) such that the periodic (or antiperiodic) root function system of $L(v)$ contains a Riesz basis if and only if $$ V(-2n)\asymp V(2n) \text{ as } n\in2\mathbb{N}\ (\text{or } n\in1+2\mathbb{N}), \quad n\to\infty. $$ For such potentials we prove that $\lambda_n^+-\lambda_n^-\sim\pm 2\sqrt{V(-2n)V(2n)}$ and $$ \mu_n-\frac12(\lambda_n^++\lambda_n^-)\sim-\frac12(V(-2n)+V(2n)). $$ References: 32 entries.
@article{MMO_2014_75_2_a5,
     author = {P. Djakov and B. Mityagin},
     title = {Riesz basis property of {Hill} operators with potentials in weighted spaces},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {181--204},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a5/}
}
TY  - JOUR
AU  - P. Djakov
AU  - B. Mityagin
TI  - Riesz basis property of Hill operators with potentials in weighted spaces
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2014
SP  - 181
EP  - 204
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a5/
LA  - en
ID  - MMO_2014_75_2_a5
ER  - 
%0 Journal Article
%A P. Djakov
%A B. Mityagin
%T Riesz basis property of Hill operators with potentials in weighted spaces
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2014
%P 181-204
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a5/
%G en
%F MMO_2014_75_2_a5
P. Djakov; B. Mityagin. Riesz basis property of Hill operators with potentials in weighted spaces. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 181-204. http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a5/