Riesz basis property of Hill operators with potentials in weighted spaces
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 181-204
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider the Hill operator $L(v)=-d^2/dx^2+v(x)$ on $[0,\pi]$ with Dirichlet, periodic or antiperiodic
boundary conditions; then for large enough $n$ close to $n^2$ there are one Dirichlet eigenvalue $\mu_n$ and
two periodic (if $n$ is even) or antiperiodic (if $n$ is odd) eigenvalues $\lambda_n^-$, $\lambda_n^+$
(counted with multiplicity).
We describe classes of complex potentials $v(x)=\sum_{2\mathbb{Z}}V(k)e^{ikx}$
in weighted spaces (defined in terms of the Fourier coefficients of $v$) such that the periodic (or antiperiodic) root function system of $L(v)$ contains a Riesz basis if and only if
$$
V(-2n)\asymp V(2n) \text{ as } n\in2\mathbb{N}\ (\text{or } n\in1+2\mathbb{N}), \quad n\to\infty.
$$
For such potentials we prove that $\lambda_n^+-\lambda_n^-\sim\pm 2\sqrt{V(-2n)V(2n)}$ and
$$
\mu_n-\frac12(\lambda_n^++\lambda_n^-)\sim-\frac12(V(-2n)+V(2n)).
$$ References: 32 entries.
@article{MMO_2014_75_2_a5,
author = {P. Djakov and B. Mityagin},
title = {Riesz basis property of {Hill} operators with potentials in weighted spaces},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {181--204},
publisher = {mathdoc},
volume = {75},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a5/}
}
TY - JOUR AU - P. Djakov AU - B. Mityagin TI - Riesz basis property of Hill operators with potentials in weighted spaces JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2014 SP - 181 EP - 204 VL - 75 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a5/ LA - en ID - MMO_2014_75_2_a5 ER -
P. Djakov; B. Mityagin. Riesz basis property of Hill operators with potentials in weighted spaces. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 181-204. http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a5/