Comparison of the singular numbers of correct restrictions of elliptic differential operators
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 139-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is dedicated to finding the asymptotics of singular numbers of a correct restriction of a uniformly elliptic differential operator of order $2l$ defined on a bounded domain in $\mathbb{R}^n$ with sufficiently smooth boundary, which is in general a non-selfadjoint operator. Conditions are established on a correct restriction, ensuring that its singular numbers $s_k$ are of order $k^{2l/n}$ as $k\to\infty$. As an application of this result certain estimates are obtained for the deviation upon domain perturbation of singular numbers of such correct restrictions. References: 12 entries.
@article{MMO_2014_75_2_a3,
     author = {V. I. Burenkov and M. Otelbaev},
     title = {Comparison of the singular numbers of correct restrictions of elliptic differential operators},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {139--157},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a3/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - M. Otelbaev
TI  - Comparison of the singular numbers of correct restrictions of elliptic differential operators
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2014
SP  - 139
EP  - 157
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a3/
LA  - en
ID  - MMO_2014_75_2_a3
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A M. Otelbaev
%T Comparison of the singular numbers of correct restrictions of elliptic differential operators
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2014
%P 139-157
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a3/
%G en
%F MMO_2014_75_2_a3
V. I. Burenkov; M. Otelbaev. Comparison of the singular numbers of correct restrictions of elliptic differential operators. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 139-157. http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a3/

[1] Allakhverdiev D. E., “On the rate of approximation of completely continuous operators by finite-dimensional operators”, Uch. Zap. Azerb. Univ., 2 (1957), 27–35

[2] Burenkov V. I., Sobolev spaces on domains, Teubner-texte zur mathematik, 137, B. G. Teubner, Stuttgart, 1998 | DOI | MR | Zbl

[3] Burenkov V. I., Lamberti P. D., “Spectral stability of Dirichlet second order uniformly elliptic operators”, J. Diff. Equations, 244:7 (2008), 1712–1740 | DOI | MR | Zbl

[4] Burenkov V. I., Otelbaev M., “On singular numbers of correct restrictions of non-selfadjoint elliptic differential operators”, Eurasian Math. J., 2:1 (2011), 145–148 | MR | Zbl

[5] Fan K., “On a theorem of Weyl concerning eigenvalues of linear transformations, I”, Proc. Nat. Acad. Sci. USA, 35:11 (1949), 652–655 | DOI | MR

[6] Fan K., “On a theorem of Weyl concerning eigenvalues of linear transformations, II”, Proc. Nat. Acad. Sci. USA, 36:1 (1950), 31–35 | DOI | MR | Zbl

[7] Fan K., “A minimum property of the eigenvalues of completely continuous operators. Eigenvalues of a sum of hermitian matricies”, Amer. Math. Monthly, 60:1 (1953), 48–50 | DOI | MR

[8] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[9] Otelbaev M., Kokebaev B. K., Shynybekov A. N., “K voprosam rasshireniya i suzheniya operatorov”, DAN SSSR, 271:6 (1983), 1307–1311 | MR

[10] Lions J.-L., Magenes E., Probl` emes aux limites non homog` enes et applications, v. 2, Travaux et recherches mathématiques, 18, Dunod, Paris, 1968

[11] Otelbaev M., Shynybekov A. N., “O korrektnykh zadachakh tipa Bitsadze–Samarskogo”, DAN SSSR, 265:4 (1982), 815–819 | MR | Zbl

[12] Triebel H., “Approximation numbers in function spaces and the distribution of eigenvalues of some fractal elliptic operators”, J. Approx. Theory, 129:1 (2004), 1–27 | DOI | MR | Zbl