Comparison of the singular numbers of correct restrictions of elliptic differential operators
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 139-157

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is dedicated to finding the asymptotics of singular numbers of a correct restriction of a uniformly elliptic differential operator of order $2l$ defined on a bounded domain in $\mathbb{R}^n$ with sufficiently smooth boundary, which is in general a non-selfadjoint operator. Conditions are established on a correct restriction, ensuring that its singular numbers $s_k$ are of order $k^{2l/n}$ as $k\to\infty$. As an application of this result certain estimates are obtained for the deviation upon domain perturbation of singular numbers of such correct restrictions. References: 12 entries.
@article{MMO_2014_75_2_a3,
     author = {V. I. Burenkov and M. Otelbaev},
     title = {Comparison of the singular numbers of correct restrictions of elliptic differential operators},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {139--157},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a3/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - M. Otelbaev
TI  - Comparison of the singular numbers of correct restrictions of elliptic differential operators
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2014
SP  - 139
EP  - 157
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a3/
LA  - en
ID  - MMO_2014_75_2_a3
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A M. Otelbaev
%T Comparison of the singular numbers of correct restrictions of elliptic differential operators
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2014
%P 139-157
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a3/
%G en
%F MMO_2014_75_2_a3
V. I. Burenkov; M. Otelbaev. Comparison of the singular numbers of correct restrictions of elliptic differential operators. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 139-157. http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a3/