Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2014_75_2_a11, author = {K. A. Mirzoev}, title = {Sturm--Liouville operators}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {335--359}, publisher = {mathdoc}, volume = {75}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a11/} }
K. A. Mirzoev. Sturm--Liouville operators. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 335-359. http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a11/
[1] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, v. II, Vischa shkola, Kharkov, 1978
[2] Ismagilov R. S., “Ob usloviyakh samosopryazhënnosti differentsialnykh operatorov vysshego poryadka”, DAN SSSR, 142:6 (1962), 1239–1242 | MR | Zbl
[3] Ismagilov R. S., “O samosopryazhënnosti operatora Shturma–Liuvillya”, UMN, 18:5(113) (1963), 161–166 | MR | Zbl
[4] Konechnaya N. N., “Ob asimptoticheskom integrirovanii simmetricheskikh kvazidifferentsialnykh uravnenii vtorogo poryadka”, Matem. zametki, 90:6 (2011), 875–884 | DOI | MR | Zbl
[5] Kostenko A. S., Malamud M. M., “Ob odnomernom operatore Shrëdingera s $\delta$-vzaimodeistviyami”, Funkts. analiz i ego pril., 44:2 (2010), 87–91 | DOI | MR | Zbl
[6] Krein M. G., “O neopredelënnom sluchae kraevoi zadachi Shturma–Liuvillya v intervale $(0,+\infty)$”, Izv. AN SSSR. Ser. mat., 16:4 (1952), 293–324 | MR
[7] Levitan B. M., Razlozhenie po sobstvennym funktsiyam, Gostekhizdat, M.–L., 1950
[8] Levitan B. M., “Dokazatelstvo teoremy razlozheniya po sobstvennym funktsiyam samosopryazhënnykh differentsialnykh uravnenii”, DAN SSSR, 73 (1950), 651–654 | MR | Zbl
[9] Mirzoev K. A., “Funktsiya Koshi i $\mathcal{L}_\omega^p$-svoistva reshenii kvazidifferentsialnykh uravnenii”, UMN, 46:4 (1991), 161–162 | MR
[10] Mirzoev K. A., “Ob analogakh teorem o predelnoi tochke”, Matem. zametki, 57:3 (1995), 394–414 | MR | Zbl
[11] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl
[12] Orochko Yu. B., “O dostatochnykh usloviyakh samosopryazhënnosti operatora Shturma–Liuvillya”, Matem. zametki, 15:2 (1974), 271–280 | MR
[13] Pokornyi Yu. V. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | Zbl
[14] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl
[15] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64, 2003, 159–212 | MR | Zbl
[16] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR
[17] Albeverio S., Kostenko A., Malamud M., “Spectral theory of semibounded Sturm–Liouville operators with local interactions on a discrete set”, J. Math. Phys., 51:10 (2010), 102102 | DOI | MR
[18] Amrein W. O., Hinz A. M., Pearson D. B., Sturm–Liouville Theory. Past and Present, Birkhäuser Verlag, Basel, 2005 | MR | Zbl
[19] Bennewitz C., Everitt W. N., “Some remarks on the Titchmarsh–Weyl $m$-coefficient”, AMS, Proc. of the Pleijel Conference (University of Uppsala, 1980), 49–108
[20] Buschmann D., Stolz G., Weidmann J., “One-dimensional Schrödinger operators with local point interactions”, J. Reine Angew. Math., 467 (1995), 169–186 | MR | Zbl
[21] Dixon A. C., “On the series of Sturm and Liouville, as derived from a pair of fundamental integral equations instead of a differential equation”, Philos. Trans. Roy. Soc. London. Ser. A, 211 (1912), 411–432 | DOI
[22] Eastham M. S. P., “On a limit-point method of Hartman”, Bull. London Math. Soc., 4 (1972), 340–344 | DOI | MR | Zbl
[23] Eastham M. S. P., Thompson M. L., “On the limit-point, limit-circle classification of second-order ordinary differential equation”, Quart. J. Math. Oxford Ser. 2, 24 (1973), 531–535 | DOI | MR | Zbl
[24] Eckhardt J., Gesztesy F., Nichols R., Teschl G., Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials, arXiv: 1208.4677v3[math.SP] | MR
[25] Everitt W. N., “On the deficiency index problem for ordinary differential operators 1910–1976”, Differential equations, Proc. internat. conf. (Uppsala, 1977), 62–81 | MR | Zbl
[26] Everitt W. N., Knowles I. W., Read T. T., “Limit-point and limit-circle criteria for Sturm–Liouville equations with intermittenly negative principal coefficients”, Proc. Roy. Soc. Edinburgh. Sect. A, 103 (1986), 215–228 | DOI | MR | Zbl
[27] Everitt W. N., Marcus L., Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, Math. Surveys and Monographs, 61, AMS, Providence, RI, 1999, 187 pp. | MR | Zbl
[28] Everitt W. N., Race D., “On necessary and sufficient conditions for the existence of Carathéodory solutions of ordinary differential equations”, Quaestiones Math., 2:4 (1978), 507–512 | DOI | MR | Zbl
[29] Everitt W. N., Race D., “The regular representation of singular second-order differential expressions using quasi-derivatives”, Proc. London Math. Soc. (3), 65:2 (1992), 383–404 | DOI | MR | Zbl
[30] Fulton Ch. T., “Parametrizations of Titchmarsh's $m(\lambda)$-functions in the limit circle case”, Trans. AMS, 229 (1977), 51–63 | MR | Zbl
[31] Goriunov A., Mikhailets V., “Regularization of singular Sturm–Liouville equations”, Methods Funct. Anal. Topology, 16:2 (2010), 120–130 | MR | Zbl
[32] Kostenko A. S., Malamud M. M., “1-D Schrödinger operators with local point interactions on a discrete set”, J. Diff. Eq., 249 (2010), 253–304 | DOI | MR | Zbl
[33] Read T. T., “A limit-point criterion for expressions with intermittenly positive coefficients”, J. London Math. Soc. (2), 15:2 (1977), 271–276 | DOI | MR | Zbl
[34] Christ C. S., Stolz G., “Spectral theory of one-dimensional Schrödinger operators with point interactions”, J. Math. Anal. Appl., 184:3 (1994), 491–516 | DOI | MR | Zbl
[35] Sturm Ch., Liouville J., “Extrait d'un Mémoire sur le developpement des fonctions en séries dont les différents termes sont assujettis à satisfaire à une même équation différentielle linéaire, contenant un paramètre variable”, J. Math. Pures Appl., II:2 (1837), 220–223 | MR
[36] Weyl H., “Über gewöhnliche differentialgleichungen mit singularitäten und die zugehörigen ehtwicklungen willkürlicher funktionen”, Math. Ann., 68 (1910), 220–269 | DOI | MR | Zbl
[37] White R. E., “Weak solutions of $(p(x)u'(x))'+g(x)u'(x)+qu(x)=f$ with $q, f\in H_{-1}[a, b]$, $0
(x)\in L_\infty[a, b]$, $g(x)\in L_\infty[a, b]$ and $u\in H_1[a, b]$”, SIAM J. Math. Anal., 10:6 (1979), 1313–1325 | DOI | MR | Zbl[38] Zettl A., Sturm–Liouville theory, Math. Surveys and Monographs, 121, AMS, Providence, RI, 2005 | MR | Zbl