Sturm--Liouville operators
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 335-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $ (a,b)\subset \mathbb{R}$ be a finite or infinite interval, let $ p_0(x)$, $ q_0(x)$, and $ p_1(x)$, $ x\in (a,b)$, be real-valued measurable functions such that $ p_0,p^{-1}_0$, $ p^2_1p^{-1}_0$, and $ q^2_0p^{-1}_0$ are locally Lebesgue integrable (i.e., lie in the space $ L^1_{\operatorname {loc}}(a,b)$), and let $ w(x)$, $ x\in (a,b)$, be an almost everywhere positive function. This paper gives an introduction to the spectral theory of operators generated in the space $ \mathcal {L}^2_w(a,b)$ by formal expressions of the form $$ l[f]:=w^{-1}\{-(p_0f')'+i[(q_0f)'+q_0f']+p'_1f\}, $$ where all derivatives are understood in the sense of distributions. The construction described in the paper permits one to give a sound definition of the minimal operator $ L_0$ generated by the expression $ l[f]$ in $\mathcal {L}^2_w(a,b)$ and include $ L_0$ in the class of operators generated by symmetric (formally self-adjoint) second-order quasi-differential expressions with locally integrable coefficients. In what follows, we refer to these operators as Sturm–Liouville operators. Thus, the well-developed spectral theory of second-order quasi-differential operators is used to study Sturm–Liouville operators with distributional coefficients. The main aim of the paper is to construct a Titchmarsh–Weyl theory for these operators. Here the problem on the deficiency indices of $ L_0$, i.e., on the conditions on $ p_0$, $ q_0$, and $ p_1$ under which Weyl's limit point or limit circle case is realized, is a key problem. We verify the efficiency of our results for the example of a Hamiltonian with $ \delta $-interactions of intensities $ h_k$ centered at some points $ x_k$, where $$ l[f]=-f''+\sum _{j}h_j\delta (x-x_j)f. $$
@article{MMO_2014_75_2_a11,
     author = {K. A. Mirzoev},
     title = {Sturm--Liouville operators},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {335--359},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a11/}
}
TY  - JOUR
AU  - K. A. Mirzoev
TI  - Sturm--Liouville operators
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2014
SP  - 335
EP  - 359
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a11/
LA  - ru
ID  - MMO_2014_75_2_a11
ER  - 
%0 Journal Article
%A K. A. Mirzoev
%T Sturm--Liouville operators
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2014
%P 335-359
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a11/
%G ru
%F MMO_2014_75_2_a11
K. A. Mirzoev. Sturm--Liouville operators. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 2, pp. 335-359. http://geodesic.mathdoc.fr/item/MMO_2014_75_2_a11/

[1] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, v. II, Vischa shkola, Kharkov, 1978

[2] Ismagilov R. S., “Ob usloviyakh samosopryazhënnosti differentsialnykh operatorov vysshego poryadka”, DAN SSSR, 142:6 (1962), 1239–1242 | MR | Zbl

[3] Ismagilov R. S., “O samosopryazhënnosti operatora Shturma–Liuvillya”, UMN, 18:5(113) (1963), 161–166 | MR | Zbl

[4] Konechnaya N. N., “Ob asimptoticheskom integrirovanii simmetricheskikh kvazidifferentsialnykh uravnenii vtorogo poryadka”, Matem. zametki, 90:6 (2011), 875–884 | DOI | MR | Zbl

[5] Kostenko A. S., Malamud M. M., “Ob odnomernom operatore Shrëdingera s $\delta$-vzaimodeistviyami”, Funkts. analiz i ego pril., 44:2 (2010), 87–91 | DOI | MR | Zbl

[6] Krein M. G., “O neopredelënnom sluchae kraevoi zadachi Shturma–Liuvillya v intervale $(0,+\infty)$”, Izv. AN SSSR. Ser. mat., 16:4 (1952), 293–324 | MR

[7] Levitan B. M., Razlozhenie po sobstvennym funktsiyam, Gostekhizdat, M.–L., 1950

[8] Levitan B. M., “Dokazatelstvo teoremy razlozheniya po sobstvennym funktsiyam samosopryazhënnykh differentsialnykh uravnenii”, DAN SSSR, 73 (1950), 651–654 | MR | Zbl

[9] Mirzoev K. A., “Funktsiya Koshi i $\mathcal{L}_\omega^p$-svoistva reshenii kvazidifferentsialnykh uravnenii”, UMN, 46:4 (1991), 161–162 | MR

[10] Mirzoev K. A., “Ob analogakh teorem o predelnoi tochke”, Matem. zametki, 57:3 (1995), 394–414 | MR | Zbl

[11] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[12] Orochko Yu. B., “O dostatochnykh usloviyakh samosopryazhënnosti operatora Shturma–Liuvillya”, Matem. zametki, 15:2 (1974), 271–280 | MR

[13] Pokornyi Yu. V. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | Zbl

[14] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[15] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64, 2003, 159–212 | MR | Zbl

[16] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[17] Albeverio S., Kostenko A., Malamud M., “Spectral theory of semibounded Sturm–Liouville operators with local interactions on a discrete set”, J. Math. Phys., 51:10 (2010), 102102 | DOI | MR

[18] Amrein W. O., Hinz A. M., Pearson D. B., Sturm–Liouville Theory. Past and Present, Birkhäuser Verlag, Basel, 2005 | MR | Zbl

[19] Bennewitz C., Everitt W. N., “Some remarks on the Titchmarsh–Weyl $m$-coefficient”, AMS, Proc. of the Pleijel Conference (University of Uppsala, 1980), 49–108

[20] Buschmann D., Stolz G., Weidmann J., “One-dimensional Schrödinger operators with local point interactions”, J. Reine Angew. Math., 467 (1995), 169–186 | MR | Zbl

[21] Dixon A. C., “On the series of Sturm and Liouville, as derived from a pair of fundamental integral equations instead of a differential equation”, Philos. Trans. Roy. Soc. London. Ser. A, 211 (1912), 411–432 | DOI

[22] Eastham M. S. P., “On a limit-point method of Hartman”, Bull. London Math. Soc., 4 (1972), 340–344 | DOI | MR | Zbl

[23] Eastham M. S. P., Thompson M. L., “On the limit-point, limit-circle classification of second-order ordinary differential equation”, Quart. J. Math. Oxford Ser. 2, 24 (1973), 531–535 | DOI | MR | Zbl

[24] Eckhardt J., Gesztesy F., Nichols R., Teschl G., Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials, arXiv: 1208.4677v3[math.SP] | MR

[25] Everitt W. N., “On the deficiency index problem for ordinary differential operators 1910–1976”, Differential equations, Proc. internat. conf. (Uppsala, 1977), 62–81 | MR | Zbl

[26] Everitt W. N., Knowles I. W., Read T. T., “Limit-point and limit-circle criteria for Sturm–Liouville equations with intermittenly negative principal coefficients”, Proc. Roy. Soc. Edinburgh. Sect. A, 103 (1986), 215–228 | DOI | MR | Zbl

[27] Everitt W. N., Marcus L., Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, Math. Surveys and Monographs, 61, AMS, Providence, RI, 1999, 187 pp. | MR | Zbl

[28] Everitt W. N., Race D., “On necessary and sufficient conditions for the existence of Carathéodory solutions of ordinary differential equations”, Quaestiones Math., 2:4 (1978), 507–512 | DOI | MR | Zbl

[29] Everitt W. N., Race D., “The regular representation of singular second-order differential expressions using quasi-derivatives”, Proc. London Math. Soc. (3), 65:2 (1992), 383–404 | DOI | MR | Zbl

[30] Fulton Ch. T., “Parametrizations of Titchmarsh's $m(\lambda)$-functions in the limit circle case”, Trans. AMS, 229 (1977), 51–63 | MR | Zbl

[31] Goriunov A., Mikhailets V., “Regularization of singular Sturm–Liouville equations”, Methods Funct. Anal. Topology, 16:2 (2010), 120–130 | MR | Zbl

[32] Kostenko A. S., Malamud M. M., “1-D Schrödinger operators with local point interactions on a discrete set”, J. Diff. Eq., 249 (2010), 253–304 | DOI | MR | Zbl

[33] Read T. T., “A limit-point criterion for expressions with intermittenly positive coefficients”, J. London Math. Soc. (2), 15:2 (1977), 271–276 | DOI | MR | Zbl

[34] Christ C. S., Stolz G., “Spectral theory of one-dimensional Schrödinger operators with point interactions”, J. Math. Anal. Appl., 184:3 (1994), 491–516 | DOI | MR | Zbl

[35] Sturm Ch., Liouville J., “Extrait d'un Mémoire sur le developpement des fonctions en séries dont les différents termes sont assujettis à satisfaire à une même équation différentielle linéaire, contenant un paramètre variable”, J. Math. Pures Appl., II:2 (1837), 220–223 | MR

[36] Weyl H., “Über gewöhnliche differentialgleichungen mit singularitäten und die zugehörigen ehtwicklungen willkürlicher funktionen”, Math. Ann., 68 (1910), 220–269 | DOI | MR | Zbl

[37] White R. E., “Weak solutions of $(p(x)u'(x))'+g(x)u'(x)+qu(x)=f$ with $q, f\in H_{-1}[a, b]$, $0

(x)\in L_\infty[a, b]$, $g(x)\in L_\infty[a, b]$ and $u\in H_1[a, b]$”, SIAM J. Math. Anal., 10:6 (1979), 1313–1325 | DOI | MR | Zbl

[38] Zettl A., Sturm–Liouville theory, Math. Surveys and Monographs, 121, AMS, Providence, RI, 2005 | MR | Zbl