Ergodic homoclinic groups, Sidon constructions and Poisson suspensions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 1, pp. 93-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give some new examples of mixing transformations on a space with infinite measure: the so-called Sidon constructions of rank 1. We obtain rapid decay of correlations for a class of infinite transformations; this was recently discovered by Prikhod'ko for dynamical systems with simple spectrum acting on a probability space. We obtain an affirmative answer to Gordin's question about the existence of transformations with zero entropy and an ergodic homoclinic flow. We consider modifications of Sidon constructions inducing Poisson suspensions with simple singular spectrum and a homoclinic Bernoulli flow. We give a new proof of Roy's theorem on multiple mixing of Poisson suspensions.
@article{MMO_2014_75_1_a3,
     author = {V. V. Ryzhikov},
     title = {Ergodic homoclinic groups, {Sidon} constructions and {Poisson} suspensions},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {93--103},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a3/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Ergodic homoclinic groups, Sidon constructions and Poisson suspensions
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2014
SP  - 93
EP  - 103
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a3/
LA  - ru
ID  - MMO_2014_75_1_a3
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Ergodic homoclinic groups, Sidon constructions and Poisson suspensions
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2014
%P 93-103
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a3/
%G ru
%F MMO_2014_75_1_a3
V. V. Ryzhikov. Ergodic homoclinic groups, Sidon constructions and Poisson suspensions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a3/

[1] Bashtanov A. I., “Tipichnoe peremeshivanie imeet rang 1”, Matem. zametki, 93:2 (2013), 163–171 | DOI | MR

[2] Gordin M. I., “A homoclinic version of the central limit theorem”, J. Math. Sci., 68 (1994), 451–458 | DOI | MR

[3] Danilenko A. I., Ryzhikov V. V., “Mixing constructions with infinite invariant measure and spectral multiplicities”, Ergod. Th. Dynam. Sys., 31:3 (2011), 853–873 | DOI | MR | Zbl

[4] Ismagilov R. S., “Ob unitarnykh predstavleniyakh gruppy diffeomorfizmov prostranstva $R^n$, $n\geqslant 2$”, Matem. sb., 98:1 (1975), 55–71 | MR | Zbl

[5] King J. L., “On M. Gordin's homoclinic question”, Internat. Math. Res. Notices, 1997, no. 5, 203–212 | DOI | MR | Zbl

[6] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[7] Ledrappier F., “Un champ marcovien peut être d'entropie nulle et mélangeant”, C. R. Acad. Sci. Paris Sér. A, 287 (1978), 561–563 | MR | Zbl

[8] Prikhodko A. A., “Ergodicheskie avtomorfizmy s prostym spektrom i svoistvom bystrogo ubyvaniya korrelyatsii”, Matem. zametki, 94:6 (2013), 949–954 | DOI | Zbl

[9] Ratner M., “Raghunathan's topological conjecture and distributions of unipotent flows”, Duke Math. J., 63:1 (1991), 235–280 | DOI | MR | Zbl

[10] Roy E., “Poisson suspensions and infinite ergodic theory”, Ergod. Th. Dynam. Sys., 29:2 (2009), 667–683 | DOI | MR | Zbl

[11] Ryzhikov V. V., “Slabye predely stepenei, prostoi spektr simmetricheskikh proizvedenii i peremeshivayuschie konstruktsii ranga 1”, Matem. sb., 198:5 (2007), 137–159 | DOI | MR | Zbl

[12] Tikhonov S. V., “Approksimatsiya peremeshivayuschikh preobrazovanii”, Matem. zametki, 95:2 (2014), 282–299 | DOI