Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2014_75_1_a2, author = {M. M. Graev}, title = {Einstein equations for invariant metrics on flag spaces and their {Newton} polytopes}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {25--91}, publisher = {mathdoc}, volume = {75}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a2/} }
TY - JOUR AU - M. M. Graev TI - Einstein equations for invariant metrics on flag spaces and their Newton polytopes JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2014 SP - 25 EP - 91 VL - 75 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a2/ LA - ru ID - MMO_2014_75_1_a2 ER -
M. M. Graev. Einstein equations for invariant metrics on flag spaces and their Newton polytopes. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 1, pp. 25-91. http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a2/
[1] Alekseevskii D. V., Perelomov A. M., “Invariantnye metriki Kelera–Einshteina na kompaktnykh odnorodnykh prostranstvakh”, Funkts. analiz i ego pril., 20:3 (1986), 1–16
[2] Besse A., Mnogoobraziya Einshteina, V 2 t., Mir, M., 1990 | MR | Zbl
[3] Bernshtein D. N., “Chislo kornei sistemy uravnenii”, Funkts. analiz i ego pril., 9:3 (1975), 1–4
[4] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–135
[5] Gelfand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994 | MR
[6] Fulton W., Introduction to toric varieties, Princeton University Press, 1993 | MR | Zbl
[7] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR
[8] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., “Stroenie grupp i algebr Li”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napravleniya, 41, VINITI, M., 1990, 5–253
[9] Graev M. M., “On the number of invariant Einstein metrics on a compact homogeneous space, Newton polytopes and contractions of Lie algebras”, International Journal of Geometric Methods in Modern Physics, 3:5–6 (2006), 1047–1075 | DOI | MR | Zbl
[10] Graev M. M., “Chislo invariantnykh metrik Einshteina v odnorodnom prostranstve, mnogogrannik Nyutona i szhatiya algebry Li”, Izvestiya RAN. Ser. matem., 72:2 (2007), 29–88 | DOI
[11] Graev M. M., On invariant Einstein metrics on Kähler homogeneous spaces $SU_4/T^3$, $G_2/T^2$, $E_6/T^2(A_2)^2$, $E_7/T^2A_5$, $E_8/T^2E_6$, $F_4/T^2A_2$, arXiv: 1111.0639 | MR
[12] Graev M. M., On the compactness of the set of invariant Einstein metrics, arXiv: 1207.3034v2 | MR