Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 1, pp. 15-24
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct an open set of $ C^2$-diffeomorphisms which preserve the boundary of some manifold, and which have the following property: for each mapping, the basin of attraction of one component of the attractor is open and everywhere dense, but the basin of attraction of the second component is nowhere dense, though its measure is positive.
@article{MMO_2014_75_1_a1,
     author = {N. A. Solodovnikov},
     title = {Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {15--24},
     year = {2014},
     volume = {75},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a1/}
}
TY  - JOUR
AU  - N. A. Solodovnikov
TI  - Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2014
SP  - 15
EP  - 24
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a1/
LA  - ru
ID  - MMO_2014_75_1_a1
ER  - 
%0 Journal Article
%A N. A. Solodovnikov
%T Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2014
%P 15-24
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a1/
%G ru
%F MMO_2014_75_1_a1
N. A. Solodovnikov. Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 1, pp. 15-24. http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a1/

[1] Falconer K., Fractal Geometry, John Wiley, 1990 | MR | Zbl

[2] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Lecture Notes in Mathematics, 583, 1977 | MR | Zbl

[3] Ilyashenko Yu., “Thick attractors of boundary preserving diffeomorphisms”, Indag. Math. (N.S.), 22:3–4 (2011), 257–314 | DOI | MR | Zbl

[4] Ilyashenko Yu., Negut A., “Hölder properties of perturbed skew products and Fubini regained”, Nonlinearity, 25:8 (2012), 2377–2399, arXiv: 1005.0173v1 | DOI | MR | Zbl

[5] Ilyashenko Yu., Kleptsyn V., Saltykov P., “Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins”, J. Fixed Point Theory and Appl., 3:2 (2008), 449–463 | DOI | MR | Zbl

[6] Kan I., “Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin”, Bull. AMS. (N.S.), 31 (1994), 68–74 | DOI | MR | Zbl

[7] Kleptsyn V., Minkov S., Ryzhov S., “Special ergodic theorems and dynamical large deviations”, Nonlinearity, 25:11 (2012), 3189–3196 | DOI | MR | Zbl

[8] Palis J., “A global perspective for non-conservative dynamics”, Annales Inst. Poincaré, 22 (2005), 485–507 | MR | Zbl

[9] Pugh C., Shub M., Wilkinson A., Hölder foliations, revisited, arXiv: 1112.2646 | MR

[10] Anosov D. V., “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tr. MIAN SSSR, 90, 1967, 3–210 | MR

[11] Gorodetskii A. S., “Regulyarnost tsentralnykh sloëv chastichno giperbolicheskikh mnozhestv i prilozheniya”, Izv. RAN. Ser. matem., 70:6 (2006), 19–44 | DOI | MR

[12] Kleptsyn V. A., Saltykov P. S., “O $C^2$-ustoichivykh proyavleniyakh peremezhaemosti attraktorov v klassakh sokhranyayuschikh granitsu otobrazhenii”, Tr. MMO, 72, no. 2, 2011, 249–280

[13] Pesin Ya. B., Lektsii po teorii chastichnoi giperbolichnosti i ustoichivoi ergodichnosti, MTsNMO, M., 2006

[14] Saltykov P. S., “Spetsialnaya ergodicheskaya teorema dlya diffeomorfizmov Anosova na dvumernom tore”, Funkts. analiz i ego pril., 45:1 (2011), 69–78 | DOI | MR | Zbl