Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 1, pp. 15-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an open set of $ C^2$-diffeomorphisms which preserve the boundary of some manifold, and which have the following property: for each mapping, the basin of attraction of one component of the attractor is open and everywhere dense, but the basin of attraction of the second component is nowhere dense, though its measure is positive.
@article{MMO_2014_75_1_a1,
     author = {N. A. Solodovnikov},
     title = {Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {15--24},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a1/}
}
TY  - JOUR
AU  - N. A. Solodovnikov
TI  - Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2014
SP  - 15
EP  - 24
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a1/
LA  - ru
ID  - MMO_2014_75_1_a1
ER  - 
%0 Journal Article
%A N. A. Solodovnikov
%T Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2014
%P 15-24
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a1/
%G ru
%F MMO_2014_75_1_a1
N. A. Solodovnikov. Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 1, pp. 15-24. http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a1/