Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2014_75_1_a1, author = {N. A. Solodovnikov}, title = {Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {15--24}, publisher = {mathdoc}, volume = {75}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a1/} }
TY - JOUR AU - N. A. Solodovnikov TI - Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2014 SP - 15 EP - 24 VL - 75 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a1/ LA - ru ID - MMO_2014_75_1_a1 ER -
%0 Journal Article %A N. A. Solodovnikov %T Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open %J Trudy Moskovskogo matematičeskogo obŝestva %D 2014 %P 15-24 %V 75 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a1/ %G ru %F MMO_2014_75_1_a1
N. A. Solodovnikov. Boundary-preserving mappings of a manifold with intermingling basins of components of the attractor, one of which is open. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 75 (2014) no. 1, pp. 15-24. http://geodesic.mathdoc.fr/item/MMO_2014_75_1_a1/
[1] Falconer K., Fractal Geometry, John Wiley, 1990 | MR | Zbl
[2] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Lecture Notes in Mathematics, 583, 1977 | MR | Zbl
[3] Ilyashenko Yu., “Thick attractors of boundary preserving diffeomorphisms”, Indag. Math. (N.S.), 22:3–4 (2011), 257–314 | DOI | MR | Zbl
[4] Ilyashenko Yu., Negut A., “Hölder properties of perturbed skew products and Fubini regained”, Nonlinearity, 25:8 (2012), 2377–2399, arXiv: 1005.0173v1 | DOI | MR | Zbl
[5] Ilyashenko Yu., Kleptsyn V., Saltykov P., “Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins”, J. Fixed Point Theory and Appl., 3:2 (2008), 449–463 | DOI | MR | Zbl
[6] Kan I., “Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin”, Bull. AMS. (N.S.), 31 (1994), 68–74 | DOI | MR | Zbl
[7] Kleptsyn V., Minkov S., Ryzhov S., “Special ergodic theorems and dynamical large deviations”, Nonlinearity, 25:11 (2012), 3189–3196 | DOI | MR | Zbl
[8] Palis J., “A global perspective for non-conservative dynamics”, Annales Inst. Poincaré, 22 (2005), 485–507 | MR | Zbl
[9] Pugh C., Shub M., Wilkinson A., Hölder foliations, revisited, arXiv: 1112.2646 | MR
[10] Anosov D. V., “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tr. MIAN SSSR, 90, 1967, 3–210 | MR
[11] Gorodetskii A. S., “Regulyarnost tsentralnykh sloëv chastichno giperbolicheskikh mnozhestv i prilozheniya”, Izv. RAN. Ser. matem., 70:6 (2006), 19–44 | DOI | MR
[12] Kleptsyn V. A., Saltykov P. S., “O $C^2$-ustoichivykh proyavleniyakh peremezhaemosti attraktorov v klassakh sokhranyayuschikh granitsu otobrazhenii”, Tr. MMO, 72, no. 2, 2011, 249–280
[13] Pesin Ya. B., Lektsii po teorii chastichnoi giperbolichnosti i ustoichivoi ergodichnosti, MTsNMO, M., 2006
[14] Saltykov P. S., “Spetsialnaya ergodicheskaya teorema dlya diffeomorfizmov Anosova na dvumernom tore”, Funkts. analiz i ego pril., 45:1 (2011), 69–78 | DOI | MR | Zbl