Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2013_74_2_a8, author = {F. Santos and G. M. Ziegler}, title = {Unimodular triangulations of dilated 3-polytopes}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {353--373}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a8/} }
F. Santos; G. M. Ziegler. Unimodular triangulations of dilated 3-polytopes. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 353-373. http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a8/
[1] Bruns W., Gubeladze J., Polytopes, rings, and $K$-theory, Monographs in Mathematics, Springer, 2009 | MR | Zbl
[2] De Loera A. J., Rambau J., Santos F., Triangulations: structures for algorithms and applications, Springer, 2010 | MR | Zbl
[3] Kantor J.-M., Sarkaria S. K., “On primitive subdivisions of an elementary tetrahedron”, Pacific J. Math., 211:1 (2003), 123–155 | DOI | MR | Zbl
[4] Knudsen F. F., “Construction of nice polyhedral subdivisions”, Chapter 3: G. R. Kempf, F. F.`Knudsen, D. Mumford, B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Mathematics, 339, 1973, 109–164 | DOI | MR
[5] Reeve E. J., “On the volume of lattice polyhedra”, Proc. London Math. Soc. (3), 7 (1957), 378–395 | DOI | MR | Zbl
[6] Reznick B., Clean lattice tetrahedra, June 2006, 21 pages pp., arXiv: math/0606227 | MR
[7] Scarf E. H., “Integral polyhedra in three space”, Math. Oper. Res., 10:3 (1985), 403–438 | DOI | MR | Zbl
[8] Sebő A., “An introduction to empty lattice simplices”, Integer programming and combinatorial optimization, Lecture Notes in Comput. Sci., 1610, 1999, 400–414 | DOI | MR | Zbl
[9] White K. G., “Lattice tetrahedra”, Canadian J. Math., 16 (1964), 389–396 | DOI | MR | Zbl