Unimodular triangulations of dilated 3-polytopes
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 353-373.

Voir la notice de l'article provenant de la source Math-Net.Ru

A seminal result in the theory of toric varieties, due to Knudsen, Mumford and Waterman (1973), asserts that for every lattice polytope $P$ there is a positive integer $k$ such that the dilated polytope $kP$ has a unimodular triangulation. In dimension 3, Kantor and Sarkaria (2003) have shown that $k=4$ works for every polytope. But this does not imply that every $k>4$ works as well. We here study the values of $k$ for which the result holds showing that: It contains all composite numbers. It is an additive semigroup. These two properties imply that the only values of $k$ that may not work (besides 1 and 2, which are known not to work) are $k\in\{3,5,7,11\}$. With an ad-hoc construction we show that $k=7$ and $k=11$ also work, except in this case the triangulation cannot be guaranteed to be “standard” in the boundary. All in all, the only open cases are $k=3$ and $k=5$. References: 9 entries.
@article{MMO_2013_74_2_a8,
     author = {F. Santos and G. M. Ziegler},
     title = {Unimodular triangulations of dilated 3-polytopes},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {353--373},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a8/}
}
TY  - JOUR
AU  - F. Santos
AU  - G. M. Ziegler
TI  - Unimodular triangulations of dilated 3-polytopes
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 353
EP  - 373
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a8/
LA  - en
ID  - MMO_2013_74_2_a8
ER  - 
%0 Journal Article
%A F. Santos
%A G. M. Ziegler
%T Unimodular triangulations of dilated 3-polytopes
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 353-373
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a8/
%G en
%F MMO_2013_74_2_a8
F. Santos; G. M. Ziegler. Unimodular triangulations of dilated 3-polytopes. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 353-373. http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a8/

[1] Bruns W., Gubeladze J., Polytopes, rings, and $K$-theory, Monographs in Mathematics, Springer, 2009 | MR | Zbl

[2] De Loera A. J., Rambau J., Santos F., Triangulations: structures for algorithms and applications, Springer, 2010 | MR | Zbl

[3] Kantor J.-M., Sarkaria S. K., “On primitive subdivisions of an elementary tetrahedron”, Pacific J. Math., 211:1 (2003), 123–155 | DOI | MR | Zbl

[4] Knudsen F. F., “Construction of nice polyhedral subdivisions”, Chapter 3: G. R. Kempf, F. F.`Knudsen, D. Mumford, B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Mathematics, 339, 1973, 109–164 | DOI | MR

[5] Reeve E. J., “On the volume of lattice polyhedra”, Proc. London Math. Soc. (3), 7 (1957), 378–395 | DOI | MR | Zbl

[6] Reznick B., Clean lattice tetrahedra, June 2006, 21 pages pp., arXiv: math/0606227 | MR

[7] Scarf E. H., “Integral polyhedra in three space”, Math. Oper. Res., 10:3 (1985), 403–438 | DOI | MR | Zbl

[8] Sebő A., “An introduction to empty lattice simplices”, Integer programming and combinatorial optimization, Lecture Notes in Comput. Sci., 1610, 1999, 400–414 | DOI | MR | Zbl

[9] White K. G., “Lattice tetrahedra”, Canadian J. Math., 16 (1964), 389–396 | DOI | MR | Zbl