Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2013_74_2_a5, author = {J. C. Eilbeck and K. Eilers and V. Z. Enolski}, title = {Periods of second kind differentials of $(n,s)$-curves}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {297--315}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a5/} }
TY - JOUR AU - J. C. Eilbeck AU - K. Eilers AU - V. Z. Enolski TI - Periods of second kind differentials of $(n,s)$-curves JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2013 SP - 297 EP - 315 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a5/ LA - en ID - MMO_2013_74_2_a5 ER -
J. C. Eilbeck; K. Eilers; V. Z. Enolski. Periods of second kind differentials of $(n,s)$-curves. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 297-315. http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a5/
[1] Ayano T., Nakayashiki A., On addition formulae for sigma functions of telescopic curves, 2012, 17 pp., arXiv: 1303.2878 [math.AG]
[2] Baker H. F., Abel's theorem and the allied theory including the theory of the theta function, Cambridge Univ. Press, New York, 1897; 1995
[3] Baker H. F., Multiply periodic functions, Cambridge Univ. Press, 1907 | Zbl
[4] Baldwin S., Eilbeck J. C., Gibbons J., Ônishi Y., “Abelian functions for cyclic trigonal curves of genus 4”, J. Geom. Phys., 58:4 (2008), 450–467 | DOI | MR | Zbl
[5] Bateman H., Erdelyi A., Higher transcendental functions, v. 2, McGraw-Hill, New York, 1955
[6] Bolza O., “Ueber die Reduction hyperelliptischer Integrale erster Ordnung und erster Gattung auf elliptische durch eine Transformation vierten Grades”, Math. Ann., XXVIII (1886), 447–456
[7] Braden H., Enolski V. Z., Fedorov Yu. N., “Dynamics on strata of a trigonal Jacobians in some integrable problems of rigid body motion”, Nonlinearity, 26 (2013), 1–25, arXiv: 1210.3596 | DOI | MR
[8] Braden H., Enolski V. Z., Hone A., “Bilinear recurrences and addition formulae for hyperelliptic sigma functions”, J. Nonlinear Math. Phys., 12, suppl. 2 (2005), 46–62, arXiv: NT/0501162 | DOI | MR | Zbl
[9] Bukhshtaber V. M., Leikin D. V., “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Tr. MIAN, 251, 2005, 54–126 | Zbl
[10] Bukhshtaber V. M., Leikin D. V., “Reshenie zadachi differentsirovaniya abelevykh funktsii po parametram dlya semeistv $(n, s)$-krivykh”, Funkts. analiz i ego pril., 42:4 (2008), 24–36 | DOI | MR | Zbl
[11] Bukhshtaber V. M., Leikin D. V., Enolskii V. Z., “$\sigma$-Funktsii $(n, s)$-krivykh”, UMN, 54:3(327) (1999), 155–156 | DOI | MR
[12] Bukhshtaber V. M., Leikin D. V., Enolskii V. Z., “Ratsionalnye analogi abelevykh funktsii”, Funkts. analiz i ego pril., 33:2 (1999), 1–15 | DOI | MR
[13] Buchstaber V. M., Enolski V. Z., Leykin D. V., Multi-Dimensional Sigma-Functions, 2012, 267 pp., arXiv: 1208.0990 [math-ph]
[14] Enolski V., Hartmann B., Kagramanova V., Kunz J., Lämmerzahl C., Sirimachan P., “Inversion of a general hyperelliptic integral and particle motion in Horava–Lifshitz black hole space-times”, J. Math. Phys., 53:1 (2012), 012504, 35 pp. | DOI | MR | Zbl
[15] Eilbeck J. C., Gibbons J., Ônishi Y., Previato E., From equations of Jacobians or Kummer varieties to Coble hypersurfaces
[16] Eilbeck J. C., Enolski V. Z., Matsutani S., Ônishi Y., Previato E., “Abelian functions for trigonal curves of genus three”, Int. Math. Res. Not. IMRN, 2008, no. 1, 140, 38 | MR | Zbl
[17] Eilbeck J. C., England M., “Abelian functions associated with a cyclic tetragonal curve of genus six”, J. Phys. A, 42:9 (2009), 095210, 27 pp. | DOI | MR | Zbl
[18] England M., “Higher genus Abelian functions associated with cyclic trigonal curves”, SIGMA, 6 (2010), 025, 22 pp. | MR | Zbl
[19] Farkas H. M., Kra I., Riemann surfaces, Lectures Notes in Mathematics, 352, Springer-Verlag, Berlin, 1980 | MR
[20] Fay J. D., Theta functions on Riemann surfaces, Lectures Notes in Mathematics, 352, Springer, 1973 | MR | Zbl
[21] Kharnad Dzh., Enolskii V. Z., “Razlozhenie po funktsiyam Shura $\tau$-funktsii KP, assotsiirovannykh s algebraicheskimi krivymi”, UMN, 66:4(400) (2011), 137–178 | DOI | MR | Zbl
[22] Grushevsky S., Salvati Manni R., “Two generalizations of Jacobi's derivative formula”, Math. Res. Lett., 12:5–6 (2005), 921–932 | DOI | MR | Zbl
[23] Klein F., “Ueber hyperelliptische Sigmafunctionen”, Math. Ann., 32:3 (1888), 351–380 | DOI | MR
[24] Klein F., “Zur Theorie der Abel'schen Functionen”, Math. Ann., 36:1 (1890), 1–83 | DOI | MR
[25] Komeda J., Matsutani Sh., Previato E., The sigma function for Weierstrass semigroups (3, 7, 8) and (6, 13, 14, 15, 16), 2012, arXiv: 1303.0451 [math-ph]
[26] Korotkin D., Shramchenko V., “On higher genus Weierstrass sigma-functions”, Phys. D, 24:23–24 (2012), 2086–2094 | DOI | MR | Zbl
[27] Matsutani Sh., Previato E., “Jacobi inversion on strata of the Jacobian of the $C_{rs}$ curve $y^r=f(x)$”, J. Math. Soc. Japan, 60:4 (2008), 1009–1044 | DOI | MR | Zbl
[28] Markushevich A. I., Introduction to the classical theory of Abelian functions, Translations of Mathematical Monographs, 96, AMS, 2006 | MR
[29] Matsutani Sh., Sigma functions for a space curve $(3, 4, 5)$ type with an appendix by J. Komeda, 2012, arXiv: 1112.4137 [math-ph]
[30] Nakayashiki A., “Sigma function as a tau function”, Int. Math. Res. Not. IMRN, 2010, no. 3, 373–394 | MR | Zbl
[31] Nakayashiki A., “On algebraic expressions of sigma functions for $(n, s)$-curves”, Asian J. Math., 14:2 (2010), 175–211 | DOI | MR
[32] Rosenhain G., manuscript, 1851 (in Latin); “Abhandlung über die Functionen zweier Variablen mit fier Perioden welche die Inversion sind der ultra-elliptische Integrale erster Klasse”, Ostwald Klassiker der Exacten Wissenschaften, 65, Verlag von Wilhelm Engelmann, Leipzig, 1895, 1–96 (in German)
[33] Wirtinger W. W., “Integral dritter Gattung und linear polymorphe Funktionen”, Monatsh. Math. Phys., 51 (1943), 101–114 | MR