Periods of second kind differentials of $(n,s)$-curves
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 297-315

Voir la notice de l'article provenant de la source Math-Net.Ru

For elliptic curves expressions for the periods of elliptic integrals of the second kind in terms of theta-constants, have been known since the middle of the 19th century. In this paper we consider the problem of generalizing these results to curves of higher genera, in particular to a special class of algebraic curves, the so-called $(n,s)$-curves. It is shown that the representations required can be obtained by the comparison of two equivalent expressions for the projective connection, one due to Fay–Wirtinger and the other from Klein–Weierstrass. As a principle example, we consider the case of the genus two hyperelliptic curve, and a number of new Thomae and Rosenhain type formulae are obtained. We anticipate that our analysis for the genus two curve can be extended to higher genera hyperelliptic curves, as well as to other classes of $(n,s)$ non-hyperelliptic curves. References: 33 entries.
@article{MMO_2013_74_2_a5,
     author = {J. C. Eilbeck and K. Eilers and V. Z. Enolski},
     title = {Periods of second kind differentials of $(n,s)$-curves},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {297--315},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a5/}
}
TY  - JOUR
AU  - J. C. Eilbeck
AU  - K. Eilers
AU  - V. Z. Enolski
TI  - Periods of second kind differentials of $(n,s)$-curves
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 297
EP  - 315
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a5/
LA  - en
ID  - MMO_2013_74_2_a5
ER  - 
%0 Journal Article
%A J. C. Eilbeck
%A K. Eilers
%A V. Z. Enolski
%T Periods of second kind differentials of $(n,s)$-curves
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 297-315
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a5/
%G en
%F MMO_2013_74_2_a5
J. C. Eilbeck; K. Eilers; V. Z. Enolski. Periods of second kind differentials of $(n,s)$-curves. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 297-315. http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a5/