Periods of second kind differentials of $(n,s)$-curves
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 297-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

For elliptic curves expressions for the periods of elliptic integrals of the second kind in terms of theta-constants, have been known since the middle of the 19th century. In this paper we consider the problem of generalizing these results to curves of higher genera, in particular to a special class of algebraic curves, the so-called $(n,s)$-curves. It is shown that the representations required can be obtained by the comparison of two equivalent expressions for the projective connection, one due to Fay–Wirtinger and the other from Klein–Weierstrass. As a principle example, we consider the case of the genus two hyperelliptic curve, and a number of new Thomae and Rosenhain type formulae are obtained. We anticipate that our analysis for the genus two curve can be extended to higher genera hyperelliptic curves, as well as to other classes of $(n,s)$ non-hyperelliptic curves. References: 33 entries.
@article{MMO_2013_74_2_a5,
     author = {J. C. Eilbeck and K. Eilers and V. Z. Enolski},
     title = {Periods of second kind differentials of $(n,s)$-curves},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {297--315},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a5/}
}
TY  - JOUR
AU  - J. C. Eilbeck
AU  - K. Eilers
AU  - V. Z. Enolski
TI  - Periods of second kind differentials of $(n,s)$-curves
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 297
EP  - 315
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a5/
LA  - en
ID  - MMO_2013_74_2_a5
ER  - 
%0 Journal Article
%A J. C. Eilbeck
%A K. Eilers
%A V. Z. Enolski
%T Periods of second kind differentials of $(n,s)$-curves
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 297-315
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a5/
%G en
%F MMO_2013_74_2_a5
J. C. Eilbeck; K. Eilers; V. Z. Enolski. Periods of second kind differentials of $(n,s)$-curves. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 297-315. http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a5/

[1] Ayano T., Nakayashiki A., On addition formulae for sigma functions of telescopic curves, 2012, 17 pp., arXiv: 1303.2878 [math.AG]

[2] Baker H. F., Abel's theorem and the allied theory including the theory of the theta function, Cambridge Univ. Press, New York, 1897; 1995

[3] Baker H. F., Multiply periodic functions, Cambridge Univ. Press, 1907 | Zbl

[4] Baldwin S., Eilbeck J. C., Gibbons J., Ônishi Y., “Abelian functions for cyclic trigonal curves of genus 4”, J. Geom. Phys., 58:4 (2008), 450–467 | DOI | MR | Zbl

[5] Bateman H., Erdelyi A., Higher transcendental functions, v. 2, McGraw-Hill, New York, 1955

[6] Bolza O., “Ueber die Reduction hyperelliptischer Integrale erster Ordnung und erster Gattung auf elliptische durch eine Transformation vierten Grades”, Math. Ann., XXVIII (1886), 447–456

[7] Braden H., Enolski V. Z., Fedorov Yu. N., “Dynamics on strata of a trigonal Jacobians in some integrable problems of rigid body motion”, Nonlinearity, 26 (2013), 1–25, arXiv: 1210.3596 | DOI | MR

[8] Braden H., Enolski V. Z., Hone A., “Bilinear recurrences and addition formulae for hyperelliptic sigma functions”, J. Nonlinear Math. Phys., 12, suppl. 2 (2005), 46–62, arXiv: NT/0501162 | DOI | MR | Zbl

[9] Bukhshtaber V. M., Leikin D. V., “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Tr. MIAN, 251, 2005, 54–126 | Zbl

[10] Bukhshtaber V. M., Leikin D. V., “Reshenie zadachi differentsirovaniya abelevykh funktsii po parametram dlya semeistv $(n, s)$-krivykh”, Funkts. analiz i ego pril., 42:4 (2008), 24–36 | DOI | MR | Zbl

[11] Bukhshtaber V. M., Leikin D. V., Enolskii V. Z., “$\sigma$-Funktsii $(n, s)$-krivykh”, UMN, 54:3(327) (1999), 155–156 | DOI | MR

[12] Bukhshtaber V. M., Leikin D. V., Enolskii V. Z., “Ratsionalnye analogi abelevykh funktsii”, Funkts. analiz i ego pril., 33:2 (1999), 1–15 | DOI | MR

[13] Buchstaber V. M., Enolski V. Z., Leykin D. V., Multi-Dimensional Sigma-Functions, 2012, 267 pp., arXiv: 1208.0990 [math-ph]

[14] Enolski V., Hartmann B., Kagramanova V., Kunz J., Lämmerzahl C., Sirimachan P., “Inversion of a general hyperelliptic integral and particle motion in Horava–Lifshitz black hole space-times”, J. Math. Phys., 53:1 (2012), 012504, 35 pp. | DOI | MR | Zbl

[15] Eilbeck J. C., Gibbons J., Ônishi Y., Previato E., From equations of Jacobians or Kummer varieties to Coble hypersurfaces

[16] Eilbeck J. C., Enolski V. Z., Matsutani S., Ônishi Y., Previato E., “Abelian functions for trigonal curves of genus three”, Int. Math. Res. Not. IMRN, 2008, no. 1, 140, 38 | MR | Zbl

[17] Eilbeck J. C., England M., “Abelian functions associated with a cyclic tetragonal curve of genus six”, J. Phys. A, 42:9 (2009), 095210, 27 pp. | DOI | MR | Zbl

[18] England M., “Higher genus Abelian functions associated with cyclic trigonal curves”, SIGMA, 6 (2010), 025, 22 pp. | MR | Zbl

[19] Farkas H. M., Kra I., Riemann surfaces, Lectures Notes in Mathematics, 352, Springer-Verlag, Berlin, 1980 | MR

[20] Fay J. D., Theta functions on Riemann surfaces, Lectures Notes in Mathematics, 352, Springer, 1973 | MR | Zbl

[21] Kharnad Dzh., Enolskii V. Z., “Razlozhenie po funktsiyam Shura $\tau$-funktsii KP, assotsiirovannykh s algebraicheskimi krivymi”, UMN, 66:4(400) (2011), 137–178 | DOI | MR | Zbl

[22] Grushevsky S., Salvati Manni R., “Two generalizations of Jacobi's derivative formula”, Math. Res. Lett., 12:5–6 (2005), 921–932 | DOI | MR | Zbl

[23] Klein F., “Ueber hyperelliptische Sigmafunctionen”, Math. Ann., 32:3 (1888), 351–380 | DOI | MR

[24] Klein F., “Zur Theorie der Abel'schen Functionen”, Math. Ann., 36:1 (1890), 1–83 | DOI | MR

[25] Komeda J., Matsutani Sh., Previato E., The sigma function for Weierstrass semigroups (3, 7, 8) and (6, 13, 14, 15, 16), 2012, arXiv: 1303.0451 [math-ph]

[26] Korotkin D., Shramchenko V., “On higher genus Weierstrass sigma-functions”, Phys. D, 24:23–24 (2012), 2086–2094 | DOI | MR | Zbl

[27] Matsutani Sh., Previato E., “Jacobi inversion on strata of the Jacobian of the $C_{rs}$ curve $y^r=f(x)$”, J. Math. Soc. Japan, 60:4 (2008), 1009–1044 | DOI | MR | Zbl

[28] Markushevich A. I., Introduction to the classical theory of Abelian functions, Translations of Mathematical Monographs, 96, AMS, 2006 | MR

[29] Matsutani Sh., Sigma functions for a space curve $(3, 4, 5)$ type with an appendix by J. Komeda, 2012, arXiv: 1112.4137 [math-ph]

[30] Nakayashiki A., “Sigma function as a tau function”, Int. Math. Res. Not. IMRN, 2010, no. 3, 373–394 | MR | Zbl

[31] Nakayashiki A., “On algebraic expressions of sigma functions for $(n, s)$-curves”, Asian J. Math., 14:2 (2010), 175–211 | DOI | MR

[32] Rosenhain G., manuscript, 1851 (in Latin); “Abhandlung über die Functionen zweier Variablen mit fier Perioden welche die Inversion sind der ultra-elliptische Integrale erster Klasse”, Ostwald Klassiker der Exacten Wissenschaften, 65, Verlag von Wilhelm Engelmann, Leipzig, 1895, 1–96 (in German)

[33] Wirtinger W. W., “Integral dritter Gattung und linear polymorphe Funktionen”, Monatsh. Math. Phys., 51 (1943), 101–114 | MR