On macroscopic dimension of universal coverings of closed manifolds
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 279-296

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a homological characterization of $n$-manifolds whose universal covering $\widetilde{M}$ has Gromov’s macroscopic dimension $\mathrm{dim}_{mc}\widetilde{M}$. As the result we distinguish $\mathrm{dim}_{mc}$ from the macroscopic dimension $\mathrm{dim}_{MC}$ defined by the author [7]. We prove the inequality $\mathrm{dim}_{mc}\widetilde{M}\mathrm{dim}_{MC}\widetilde{M}=n$ for every closed $n$-manifold $M$ whose fundamental group $\pi$ is a geometrically finite amenable duality group with the cohomological dimension $cd(\pi)>n$. References: 14 entries.
@article{MMO_2013_74_2_a4,
     author = {A. Dranishnikov},
     title = {On macroscopic dimension of universal coverings of closed manifolds},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {279--296},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a4/}
}
TY  - JOUR
AU  - A. Dranishnikov
TI  - On macroscopic dimension of universal coverings of closed manifolds
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 279
EP  - 296
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a4/
LA  - en
ID  - MMO_2013_74_2_a4
ER  - 
%0 Journal Article
%A A. Dranishnikov
%T On macroscopic dimension of universal coverings of closed manifolds
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 279-296
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a4/
%G en
%F MMO_2013_74_2_a4
A. Dranishnikov. On macroscopic dimension of universal coverings of closed manifolds. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 279-296. http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a4/