Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2013_74_2_a3, author = {C. Braun and A. Lazarev}, title = {Homotopy {BV} algebras in {Poisson} geometry}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {265--277}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a3/} }
C. Braun; A. Lazarev. Homotopy BV algebras in Poisson geometry. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 265-277. http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a3/
[1] Barannikov S., Kontsevich M., “Frobenius manifolds and formality of Lie algebras of polyvector fields”, Internat. Math. Res. Notices, 4 (1998), 201–215, arXiv: alg-geom/9710032 | DOI | MR | Zbl
[2] Bruce A. J., On higher Poisson and Koszul–Schouten brackets, arXiv: 0910.1992
[3] Chuang J., Lazarev A., “$L$-infinity maps and twistings”, Homology Homotopy Appl., 13:2 (2011), 175–195, arXiv: 0912.1215 | DOI | MR | Zbl
[4] Dotsenko V., Shadrin S., Vallette B., De Rham cohomology and homotopy Frobenius manifolds, arXiv: 1203.5077
[5] Fernández M., Ibáñez R., León M. de, “The canonical spectral sequences for Poisson manifolds”, Israel J. Math., 106 (1998), 133–155 | DOI | MR | Zbl
[6] Fiorenza D., Manetti M., “Formality of Koszul brackets and deformations of holomorphic Poisson manifolds”, Homology Homotopy Appl., 14:2 (2012), 63–75, arXiv: 1109.4309 | DOI | MR | Zbl
[7] Gálvez-Carrillo I., Tonks A., Vallette B., “Homotopy Batalin–Vilkovisky algebras”, J. Noncommut. Geom., 6:3 (2012), 539–602, arXiv: 0907.2246 | DOI | MR | Zbl
[8] Katzarkov L., Kontsevich M., Pantev T., “Hodge theoretic aspects of mirror symmetry”, From Hodge theory to integrability and TQFT tt$^*$-geometry, Proc. Sympos. Pure Math. AMS, 78, Providence, RI, 2008, 87–174, arXiv: 0806.0107 | DOI | MR | Zbl
[9] Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66:3 (2003), 157–216, arXiv: q-alg/9709040v1 | DOI | MR | Zbl
[10] Kravchenko O., “Deformations of Batalin–Vilkovisky algebras”, Poisson geometry (Warsaw, 1998), Banach Center Publ., 51, Polish Acad. Sci., Warsaw, 2000, 131–139, arXiv: math/9903191 | MR | Zbl
[11] Khudaverdian H. M., Voronov Th. Th., “Higher Poisson brackets and differential forms”, Geometric methods in physics, AIP Conf. Proc., 1079, Amer. Inst. Phys., Melville, New York, 2008, 203–215, arXiv: 0808.3406 | DOI | MR | Zbl
[12] Loday J.-L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 301, Springer-Verlag, Berlin, 1992, Appendix E by María O. Ronco | DOI | MR | Zbl
[13] Merkulov S. A., “Formality of canonical symplectic complexes and Frobenius manifolds”, Internat. Math. Res. Notices, 1998, no. 14, 727–733, arXiv: math/9805072 | DOI | MR | Zbl
[14] Sharygin G., Talalaev D., “On the Lie-formality of Poisson manifolds”, J. $K$-Theory, 2:2, Special issue in memory of Yurii Petrovich Solovyev. Part 1 (2008), 361–384, arXiv: math/0503635 | DOI | MR | Zbl
[15] John Terilla, “Smoothness theorem for differential BV algebras”, J. Topol., 1:3 (2008), 693–702, arXiv: 0707.1290 | DOI | MR | Zbl
[16] Voronov Th., “Higher derived brackets and homotopy algebras”, J. Pure Appl. Algebra, 202:1–3 (2005), 133–153, arXiv: math/0304038 | DOI | MR | Zbl
[17] Voronov Th., “Higher derived brackets for arbitrary derivations”, Travaux mathématiques, Trav. Math., XVI, Univ. Luxemb., Luxembourg, 2005, 163–186, arXiv: math/0412202 | MR | Zbl