Homotopy BV algebras in Poisson geometry
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 265-277

Voir la notice de l'article provenant de la source Math-Net.Ru

We define and study the degeneration property for $\mathrm{BV}_\infty$ algebras and show that it implies that the underlying $L_\infty$ algebras are homotopy abelian. The proof is based on a generalisation of the well- known identity $\Delta(e^\xi)=e^\xi\left(\Delta(\xi)+\frac12[\xi,\xi]\right)$ which holds in all BV algebras. As an application we show that the higher Koszul brackets on the cohomology of a manifold supplied with a generalised Poisson structure all vanish. References: 17 entries.
@article{MMO_2013_74_2_a3,
     author = {C. Braun and A. Lazarev},
     title = {Homotopy {BV} algebras in {Poisson} geometry},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {265--277},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a3/}
}
TY  - JOUR
AU  - C. Braun
AU  - A. Lazarev
TI  - Homotopy BV algebras in Poisson geometry
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 265
EP  - 277
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a3/
LA  - en
ID  - MMO_2013_74_2_a3
ER  - 
%0 Journal Article
%A C. Braun
%A A. Lazarev
%T Homotopy BV algebras in Poisson geometry
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 265-277
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a3/
%G en
%F MMO_2013_74_2_a3
C. Braun; A. Lazarev. Homotopy BV algebras in Poisson geometry. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 265-277. http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a3/