Homotopy BV algebras in Poisson geometry
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 265-277
Voir la notice de l'article provenant de la source Math-Net.Ru
We define and study the degeneration property for $\mathrm{BV}_\infty$ algebras and show that it implies that the underlying $L_\infty$ algebras are homotopy abelian. The proof is based on a generalisation of the well- known identity $\Delta(e^\xi)=e^\xi\left(\Delta(\xi)+\frac12[\xi,\xi]\right)$ which holds in all BV algebras. As an application we show that the higher Koszul brackets on the cohomology of a manifold supplied with a generalised Poisson structure all vanish. References: 17 entries.
@article{MMO_2013_74_2_a3,
author = {C. Braun and A. Lazarev},
title = {Homotopy {BV} algebras in {Poisson} geometry},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {265--277},
publisher = {mathdoc},
volume = {74},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a3/}
}
C. Braun; A. Lazarev. Homotopy BV algebras in Poisson geometry. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 2, pp. 265-277. http://geodesic.mathdoc.fr/item/MMO_2013_74_2_a3/