Bounded ergodic constructions, disjointness, and weak limits of powers
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 201-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the disjointness property of powers of a totally ergodic bounded construction of rank 1 and some generalizations of this result. We look at applications to the problem when the Möbius function is independent of the sequence induced by a bounded construction.
@article{MMO_2013_74_1_a6,
     author = {V. V. Ryzhikov},
     title = {Bounded ergodic constructions, disjointness, and weak limits of powers},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {201--208},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a6/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Bounded ergodic constructions, disjointness, and weak limits of powers
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 201
EP  - 208
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a6/
LA  - ru
ID  - MMO_2013_74_1_a6
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Bounded ergodic constructions, disjointness, and weak limits of powers
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 201-208
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a6/
%G ru
%F MMO_2013_74_1_a6
V. V. Ryzhikov. Bounded ergodic constructions, disjointness, and weak limits of powers. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 201-208. http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a6/

[1] Furstenberg H., “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. System Theory, 1 (1967), 1–49 | DOI | MR | Zbl

[2] Bourgain J., Sarnak P., Ziegler T., “Distjointness of Moebius from horocycle flows”, From Fourier analysis and number theory to Radon transforms and Geometry, Dev. Math., 28, Springer, New York, 2013, 67–83 | DOI | MR | Zbl

[3] Sarnak P., Three lectures on the Moebius Function randomness and dynamics, http://publications.ias.edu/sarnak/

[4] Bourgain J., On the correlation of the Moebius function with random rank-one systems, arXiv: 1112.1032

[5] Ryzhikov V. V., Minimal self-joinings, bounded constructions, and weak closure of ergodic actions, arXiv: 1212.2602

[6] Abdalaoui H., Lemanczyk M., De La Rue Th., On spectral disjointness of powers for rank-one transformations and Moebius orthogonality, arXiv: 1301.0134

[7] Ryzhikov V. V., “Prostoi spektr tenzornogo proizvedeniya stepenei peremeshivayuschego avtomorfizma”, Tr. MMO, 73, no. 2, 2012, 229–239 | Zbl

[8] Prikhodko A. A., “Polinomy Litlvuda i ikh prilozheniya k spektralnoi teorii dinamicheskikh sistem”, Matem. sb., 204:6 (2013), 135–160 | DOI | MR

[9] Ryzhikov V. V., “Spleteniya tenzornykh proizvedenii i stokhasticheskii tsentralizator dinamicheskikh sistem”, Matem. sb., 188:2 (1997), 67–94 | DOI | MR | Zbl

[10] Ageev O. N., “Spectral rigidity of group actions: applications to the case $\mathrm{gr}(t,s; ts=ts^2)$”, Proc. AMS, 134:5 (2006), 1331–1338 | DOI | MR | Zbl

[11] Danilenko A. I., “Weakly mixing rank-one transformations conjugate to their squares”, Studia Math., 187:1 (2008), 75–93 | DOI | MR | Zbl

[12] Ryzhikov V. V., “Cpektralnye kratnosti stepenei slabo peremeshivayuschego avtomorfizma”, Matem. sb., 203:7 (2012), 149–160 | DOI | MR | Zbl