Bypasses for rectangular diagrams. A proof of the Jones conjecture and related questions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 115-173

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a criterion, in terms of Legendrian knots, for a rectangular diagram to admit a simplification and show that simplifications of two different types are, in a sense, independent of each other. We show that a minimal rectangular diagram maximizes the Thurston–Bennequin number for the corresponding Legendrian links. We prove the Jones conjecture on the invariance of the algebraic number of crossings of a minimal braid representing a given link. We also give a new proof of the monotonic simplification theorem for the unknot.
@article{MMO_2013_74_1_a4,
     author = {I. A. Dynnikov and M. V. Prasolov},
     title = {Bypasses for rectangular diagrams. {A} proof of the {Jones} conjecture and related questions},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {115--173},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a4/}
}
TY  - JOUR
AU  - I. A. Dynnikov
AU  - M. V. Prasolov
TI  - Bypasses for rectangular diagrams. A proof of the Jones conjecture and related questions
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 115
EP  - 173
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a4/
LA  - ru
ID  - MMO_2013_74_1_a4
ER  - 
%0 Journal Article
%A I. A. Dynnikov
%A M. V. Prasolov
%T Bypasses for rectangular diagrams. A proof of the Jones conjecture and related questions
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 115-173
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a4/
%G ru
%F MMO_2013_74_1_a4
I. A. Dynnikov; M. V. Prasolov. Bypasses for rectangular diagrams. A proof of the Jones conjecture and related questions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 115-173. http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a4/