Bypasses for rectangular diagrams. A proof of the Jones conjecture and related questions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 115-173
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a criterion, in terms of Legendrian knots, for a rectangular diagram to admit a simplification and show that simplifications of two different types are, in a sense, independent of each other. We show that a minimal rectangular diagram maximizes the Thurston–Bennequin number for the corresponding Legendrian links. We prove the Jones conjecture on the invariance of the algebraic number of crossings of a minimal braid representing a given link. We also give a new proof of the monotonic simplification theorem for the unknot.
@article{MMO_2013_74_1_a4,
author = {I. A. Dynnikov and M. V. Prasolov},
title = {Bypasses for rectangular diagrams. {A} proof of the {Jones} conjecture and related questions},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {115--173},
publisher = {mathdoc},
volume = {74},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a4/}
}
TY - JOUR AU - I. A. Dynnikov AU - M. V. Prasolov TI - Bypasses for rectangular diagrams. A proof of the Jones conjecture and related questions JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2013 SP - 115 EP - 173 VL - 74 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a4/ LA - ru ID - MMO_2013_74_1_a4 ER -
%0 Journal Article %A I. A. Dynnikov %A M. V. Prasolov %T Bypasses for rectangular diagrams. A proof of the Jones conjecture and related questions %J Trudy Moskovskogo matematičeskogo obŝestva %D 2013 %P 115-173 %V 74 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a4/ %G ru %F MMO_2013_74_1_a4
I. A. Dynnikov; M. V. Prasolov. Bypasses for rectangular diagrams. A proof of the Jones conjecture and related questions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 115-173. http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a4/