Hill’s formula for $g$-periodic trajectories of Lagrangian systems
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 75-113

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper some results of a work by Bolotin and Treshchëv are generalized to the case of $g$-periodic trajectories of Lagrangian systems. Formulae connecting the characteristic polynomial of the monodromy matrix with the determinant of the Hessian of the action functional are obtained both for the discrete and continuous cases. Applications to the problem of stability of $g$-periodic trajectories are given. Hill’s formula can be used to study $g$-periodic orbits obtained by variational methods.
@article{MMO_2013_74_1_a3,
     author = {M. N. Davletshin},
     title = {Hill{\textquoteright}s formula for $g$-periodic trajectories of {Lagrangian} systems},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {75--113},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a3/}
}
TY  - JOUR
AU  - M. N. Davletshin
TI  - Hill’s formula for $g$-periodic trajectories of Lagrangian systems
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 75
EP  - 113
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a3/
LA  - ru
ID  - MMO_2013_74_1_a3
ER  - 
%0 Journal Article
%A M. N. Davletshin
%T Hill’s formula for $g$-periodic trajectories of Lagrangian systems
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 75-113
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a3/
%G ru
%F MMO_2013_74_1_a3
M. N. Davletshin. Hill’s formula for $g$-periodic trajectories of Lagrangian systems. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 75-113. http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a3/