Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2013_74_1_a3, author = {M. N. Davletshin}, title = {Hill{\textquoteright}s formula for $g$-periodic trajectories of {Lagrangian} systems}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {75--113}, publisher = {mathdoc}, volume = {74}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a3/} }
M. N. Davletshin. Hill’s formula for $g$-periodic trajectories of Lagrangian systems. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 75-113. http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a3/
[1] Bolotin S. V., Treschëv D. V., “Formula Khilla”, UMN, 65:2(392) (2010), 3–70 | DOI | MR | Zbl
[2] Hill G. W., “On the part of the motion of the lunar perigee which is a function of the mean motions of the Sun and Moon”, Acta Math., VIII:1 (1886), 1–36 | DOI | MR
[3] Poincaré A., Les méthodes nouvelles de la mécanique céleste, v. 1, Gauthier-Villars, Paris, 1892 ; v. 2, 1893; v. 3, 1899 | Zbl
[4] MacKay R. S., Meiss J. D., “Linear stability of periodic orbits in Lagrangian systems”, Phys. Lett. A, 98:3 (1983), 92–94 | DOI | MR
[5] Treschëv D. V., “K voprosu ob ustoichivosti periodicheskikh traektorii bilyarda Birkgofa”, Vestnik Mosk. un-ta. Ser. 1. Matem., mekh., 1988, no. 2, 44–50
[6] Bolotin S. V., “Ob opredelitele Khilla periodicheskoi traektorii”, Vestnik Mosk. un-ta. Ser. 1. Matem., mekh., 1988, no. 3, 30–34 | MR | Zbl
[7] Kozlov V. V., Treschëv D. V., Billiardy: geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991 | Zbl
[8] Kozlov V. V., “On the mechanism of the stability loss”, Diff. Equations, 45:4 (2009), 496–505 | MR | Zbl
[9] Hu X., Wang P., “Conditional Fredholm determinant for the S-periodic orbits in Hamiltonian systems”, J. Funct. Anal., 2011 | DOI | MR
[10] Kozlov V. V., “Spectral properties of operators with polynomial invariants in real finite-dimensional spaces”, Proceedings of Steklov Inst. of Math., 268, 2010, 1–13 | DOI | MR
[11] Liu C., Long Y., “Iterated index formula for closed geodesics with applications”, Science in China, 45:1 (2002), 9–28 | MR | Zbl
[12] Long Y., Index theory for symplectic paths with applications, Progress in Math., 207, Birkhauser, Basel, 2002 | MR | Zbl
[13] Veselov A. P., “Integriruemye otobrazheniya”, UMN, 46:5 (1991), 3–45 | MR
[14] Makdaff D., Salamon D., “Vvedenie v simplekticheskuyu topologiyu”, RKhD, 2011
[15] Treschëv D. V., “O svyazi indeksa Morsa zamknutoi geodezicheskoi s ee ustoichivostyu”, Tr. seminara po vektornomu i tenzornomu analizu, Izd-vo MGU, M., 1988, 175–189
[16] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, URSS, M., 2001
[17] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, URSS, M., 2003
[18] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR
[19] Hu X., Sun S., Index and stability of symmetric periodci orbits in Hamiltonian systems with applications to figure-eight orbit, Preprint, 2009 | MR
[20] Hu X., Sun S., Morse index and stability of Lagrangian solutions in the planar 3 body problem, Preprint, 2009 | MR
[21] Chenciner A., Montgomery R., “A remarkable periodic solution of the 3 body problem in the case of equal masses”, Annals of Math., 152 (2000), 881–901 | DOI | MR | Zbl
[22] Ferrario D., Terracini S., “On the existence of collisionless equivariant minimizers for the classical $n$-body problem”, Invent. Math., 155:2 (2004), 305–362 | DOI | MR | Zbl
[23] Terracini S., Venturelli A., “Symmetric trajectories for the $2N$-body problem with equal masses”, Arch. Ration. Mech. Anal., 184:3 (2007), 465–493 | DOI | MR | Zbl
[24] Dullin H. R., Meiss J. D., “Stability of minimal periodic orbits”, Phys. Lett. A, 247 (1998), 227–234 | DOI | MR | Zbl
[25] Kozlov V. V., “Zadacha ob ustoichivosti dvuzvennykh traektorii mnogomernogo billiarda Birkgofa”, Tr. MIAN, 273, 2011, 212–230 | MR | Zbl
[26] Bialy M., “Maximizing orbits for higher-dimensional convex billiards”, J. of Modern Dynamics, 3:1 (2009), 51–59 | DOI | MR | Zbl
[27] Birkhoff G., Dynamical systems, AMS Colloquium Publications, IX, AMS, Providence, RI, 1966 (With an addendum by Jurgen Moser)
[28] Sinai Ya. G., “Dinamicheskie sistemy s uprugimi otrazheniyami. Ergodicheskie svoistva rasseivayuschikh bilyardov”, UMN, 25:2(152) (1970), 141–192 | MR | Zbl
[29] Aubry S., Abramovici G., “Chaotic trajectories in the standard map: the concept of anti-integrability”, Physica, 43D (1990), 199–219 | MR | Zbl
[30] MacKay R. S., Meiss J. D., “Cantori for symplectic maps near the anti-integrable limit”, Nonlinearity, 5:1 (1992), 149–160 | DOI | MR | Zbl
[31] Treschev D., Zubelevich O., Introduction to the perturbation theory of Hamiltonian systems, Springer, 2009 | MR
[32] Bolotin S. V., MacKay R., “Multibump orbits near the anti-integrable limit for Lagrangian systems”, Nonlinearity, 10:5 (1997), 1015 | DOI | MR | Zbl
[33] Klingenberg W., Lectures on closed geodesics, Springer-Verlag, Berlin–Heidelberg–New York, 1978 | MR
[34] Bott R., “On the iteration of closed geodesics and Sturm intersection theory”, Comm. Pure. Appl. Math., 9 (1956), 171–206 | DOI | MR | Zbl