Hill’s formula for $g$-periodic trajectories of Lagrangian systems
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 75-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper some results of a work by Bolotin and Treshchëv are generalized to the case of $g$-periodic trajectories of Lagrangian systems. Formulae connecting the characteristic polynomial of the monodromy matrix with the determinant of the Hessian of the action functional are obtained both for the discrete and continuous cases. Applications to the problem of stability of $g$-periodic trajectories are given. Hill’s formula can be used to study $g$-periodic orbits obtained by variational methods.
@article{MMO_2013_74_1_a3,
     author = {M. N. Davletshin},
     title = {Hill{\textquoteright}s formula for $g$-periodic trajectories of {Lagrangian} systems},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {75--113},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a3/}
}
TY  - JOUR
AU  - M. N. Davletshin
TI  - Hill’s formula for $g$-periodic trajectories of Lagrangian systems
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 75
EP  - 113
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a3/
LA  - ru
ID  - MMO_2013_74_1_a3
ER  - 
%0 Journal Article
%A M. N. Davletshin
%T Hill’s formula for $g$-periodic trajectories of Lagrangian systems
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 75-113
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a3/
%G ru
%F MMO_2013_74_1_a3
M. N. Davletshin. Hill’s formula for $g$-periodic trajectories of Lagrangian systems. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 75-113. http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a3/

[1] Bolotin S. V., Treschëv D. V., “Formula Khilla”, UMN, 65:2(392) (2010), 3–70 | DOI | MR | Zbl

[2] Hill G. W., “On the part of the motion of the lunar perigee which is a function of the mean motions of the Sun and Moon”, Acta Math., VIII:1 (1886), 1–36 | DOI | MR

[3] Poincaré A., Les méthodes nouvelles de la mécanique céleste, v. 1, Gauthier-Villars, Paris, 1892 ; v. 2, 1893; v. 3, 1899 | Zbl

[4] MacKay R. S., Meiss J. D., “Linear stability of periodic orbits in Lagrangian systems”, Phys. Lett. A, 98:3 (1983), 92–94 | DOI | MR

[5] Treschëv D. V., “K voprosu ob ustoichivosti periodicheskikh traektorii bilyarda Birkgofa”, Vestnik Mosk. un-ta. Ser. 1. Matem., mekh., 1988, no. 2, 44–50

[6] Bolotin S. V., “Ob opredelitele Khilla periodicheskoi traektorii”, Vestnik Mosk. un-ta. Ser. 1. Matem., mekh., 1988, no. 3, 30–34 | MR | Zbl

[7] Kozlov V. V., Treschëv D. V., Billiardy: geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991 | Zbl

[8] Kozlov V. V., “On the mechanism of the stability loss”, Diff. Equations, 45:4 (2009), 496–505 | MR | Zbl

[9] Hu X., Wang P., “Conditional Fredholm determinant for the S-periodic orbits in Hamiltonian systems”, J. Funct. Anal., 2011 | DOI | MR

[10] Kozlov V. V., “Spectral properties of operators with polynomial invariants in real finite-dimensional spaces”, Proceedings of Steklov Inst. of Math., 268, 2010, 1–13 | DOI | MR

[11] Liu C., Long Y., “Iterated index formula for closed geodesics with applications”, Science in China, 45:1 (2002), 9–28 | MR | Zbl

[12] Long Y., Index theory for symplectic paths with applications, Progress in Math., 207, Birkhauser, Basel, 2002 | MR | Zbl

[13] Veselov A. P., “Integriruemye otobrazheniya”, UMN, 46:5 (1991), 3–45 | MR

[14] Makdaff D., Salamon D., “Vvedenie v simplekticheskuyu topologiyu”, RKhD, 2011

[15] Treschëv D. V., “O svyazi indeksa Morsa zamknutoi geodezicheskoi s ee ustoichivostyu”, Tr. seminara po vektornomu i tenzornomu analizu, Izd-vo MGU, M., 1988, 175–189

[16] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, URSS, M., 2001

[17] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, URSS, M., 2003

[18] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[19] Hu X., Sun S., Index and stability of symmetric periodci orbits in Hamiltonian systems with applications to figure-eight orbit, Preprint, 2009 | MR

[20] Hu X., Sun S., Morse index and stability of Lagrangian solutions in the planar 3 body problem, Preprint, 2009 | MR

[21] Chenciner A., Montgomery R., “A remarkable periodic solution of the 3 body problem in the case of equal masses”, Annals of Math., 152 (2000), 881–901 | DOI | MR | Zbl

[22] Ferrario D., Terracini S., “On the existence of collisionless equivariant minimizers for the classical $n$-body problem”, Invent. Math., 155:2 (2004), 305–362 | DOI | MR | Zbl

[23] Terracini S., Venturelli A., “Symmetric trajectories for the $2N$-body problem with equal masses”, Arch. Ration. Mech. Anal., 184:3 (2007), 465–493 | DOI | MR | Zbl

[24] Dullin H. R., Meiss J. D., “Stability of minimal periodic orbits”, Phys. Lett. A, 247 (1998), 227–234 | DOI | MR | Zbl

[25] Kozlov V. V., “Zadacha ob ustoichivosti dvuzvennykh traektorii mnogomernogo billiarda Birkgofa”, Tr. MIAN, 273, 2011, 212–230 | MR | Zbl

[26] Bialy M., “Maximizing orbits for higher-dimensional convex billiards”, J. of Modern Dynamics, 3:1 (2009), 51–59 | DOI | MR | Zbl

[27] Birkhoff G., Dynamical systems, AMS Colloquium Publications, IX, AMS, Providence, RI, 1966 (With an addendum by Jurgen Moser)

[28] Sinai Ya. G., “Dinamicheskie sistemy s uprugimi otrazheniyami. Ergodicheskie svoistva rasseivayuschikh bilyardov”, UMN, 25:2(152) (1970), 141–192 | MR | Zbl

[29] Aubry S., Abramovici G., “Chaotic trajectories in the standard map: the concept of anti-integrability”, Physica, 43D (1990), 199–219 | MR | Zbl

[30] MacKay R. S., Meiss J. D., “Cantori for symplectic maps near the anti-integrable limit”, Nonlinearity, 5:1 (1992), 149–160 | DOI | MR | Zbl

[31] Treschev D., Zubelevich O., Introduction to the perturbation theory of Hamiltonian systems, Springer, 2009 | MR

[32] Bolotin S. V., MacKay R., “Multibump orbits near the anti-integrable limit for Lagrangian systems”, Nonlinearity, 10:5 (1997), 1015 | DOI | MR | Zbl

[33] Klingenberg W., Lectures on closed geodesics, Springer-Verlag, Berlin–Heidelberg–New York, 1978 | MR

[34] Bott R., “On the iteration of closed geodesics and Sturm intersection theory”, Comm. Pure. Appl. Math., 9 (1956), 171–206 | DOI | MR | Zbl