Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2013_74_1_a2, author = {I. D. Shkredov}, title = {Some new results on higher energies}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {35--73}, publisher = {mathdoc}, volume = {74}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a2/} }
I. D. Shkredov. Some new results on higher energies. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 35-73. http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a2/
[1] Bateman M., Katz N., New bounds on cap sets, 31 Jan. 2011, arXiv: 1101.5851v1 [math.CA] | MR
[2] Bateman M., Katz N., Structure in additively nonsmoothing sets, 14 Apr. 2011, arXiv: 1104.2862v1 [math.CO]
[3] Bourgain J., “More on the sum-product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl
[4] Bourgain J., “Estimates on exponential sums related to the Diffie–Hellmann distributions”, GAFA (to appear)
[5] Carbery A., “A multilinear generalization of the Cauchy–Schwarz inequality”, Proc. AMS (to appear)
[6] Carbery A., An automatic proof of a multilinear generalization of the Cauchy–Schwarz inequality, Preprint
[7] Glibichuk A. A., Konyagin S. V., “Additive properties of product sets in fields of prime order”, Additive combinatorics, CRM Proc. Lecture Notes. AMS, 43, Providence, 2007, 279–286 | MR | Zbl
[8] Gowers W. T., “A new proof of Szemerédi's theorem for arithmetic progressions of length four”, Geom. Func. Anal., 8 (1998), 529–551 | DOI | MR | Zbl
[9] Gowers W. T., “A new proof of Szemerédi's theorem”, Geom. Func. Anal., 11 (2001), 465–588 | DOI | MR | Zbl
[10] Jones T. G. F., Roche-Newton O., Improved bounds on the set $A(A+1)$, arXiv: 1205.3937v1 [math.CO] | MR
[11] Horn R., Johnson C., Matrix Analysis, Cambridge University Press, Cambridge, 1985 | MR | Zbl
[12] Iosevich A., Konyagin S. V., Rudnev M., Ten V., “On combinatorial complexity of convex sequences”, Discrete Comput. Geom., 35 (2006), 143–158 | DOI | MR | Zbl
[13] Konyagin S. V., “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, Sovremennye problemy teorii chisel i ee prilozheniya. Aktualnye problemy, IV Mezhdunarodnaya konferentsiya, v. III, MGU, M., 2002, 86–114 | MR
[14] Konyagin S. V., Rudnev M., On new sum-product type estimates, Preprint | MR
[15] Li L., On a theorem of Schoen and Shkredov on sumsets of convex sets, arXiv: 1108.4382v1 [math.CO]
[16] Li L., Roche-Newton O., Convexity and a sum-product type estimate, arXiv: 1111.5159v1 [math.CO] | MR
[17] Rudnev M., An improved sum-product inequality in fields of prime order, arXiv: 1011.2738v2 [math.CO] | MR
[18] Sanders T., Approximate (abelian) groups, 3 Dec. 2012, arXiv: 1212.0456v1 [math.CA] | MR
[19] Schoen T., New bounds in Balog–Szemerédi–Gowers theorem, Preprint
[20] Schoen T., Shkredov I. D., “Additive properties of multiplicative subgroups of $\mathbb{F}_p$”, Quart. J. Math., 63:3 (2012), 713–722 | DOI | MR | Zbl
[21] Schoen T., Shkredov I. D., “On sumsets of convex sets”, Comb. Probab. Comput., 20 (2011), 793–798 | DOI | MR | Zbl
[22] Schoen T., Shkredov I. D., Higher moments of convolutions, 21 Sep. 2012, arXiv: 1110.2986v3 [math.CO] | MR
[23] Shkredov I. D., “O mnozhestvakh s malym udvoeniem”, Matem. zametki, 84:6 (2008), 927–947 | DOI | MR | Zbl
[24] Shkredov I. D., “Some applications of W. Rudin's inequality to problems of combinatorial number theory”, Unif. Distrib. Theory, 6:2 (95–116), 2011 | MR | Zbl
[25] Shkredov I. D., Some new inequalities in additive combinatorics, arXiv: 1208.2344v2 [math.CO]
[26] Shkredov I. D., “On Heilbronn's exponential sum”, Quart. J. Math. | DOI
[27] Vyugin I. V., Shkredov I. D., “Ob additivnykh sdvigakh multiplikativnykh podgrupp”, Matem. sb., 203:6 (2012), 81–100 | DOI | MR | Zbl
[28] Tao T., Vu V., Additive combinatorics, Cambridge University Press, Cambridge, 2006 | MR