Some new results on higher energies
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 35-73
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article is concerned with the method of higher energies from combinatorial number theory. Upper bounds are obtained for the additive energies of convex sets and of sets $A$ with small $|AA|$ and $|A(A+1)|$. New structural results, involving the notion of a dual popular difference set, are proved in terms of higher energies.
@article{MMO_2013_74_1_a2,
     author = {I. D. Shkredov},
     title = {Some new results on higher energies},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {35--73},
     year = {2013},
     volume = {74},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a2/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - Some new results on higher energies
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 35
EP  - 73
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a2/
LA  - ru
ID  - MMO_2013_74_1_a2
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T Some new results on higher energies
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 35-73
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a2/
%G ru
%F MMO_2013_74_1_a2
I. D. Shkredov. Some new results on higher energies. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 35-73. http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a2/

[1] Bateman M., Katz N., New bounds on cap sets, 31 Jan. 2011, arXiv: 1101.5851v1 [math.CA] | MR

[2] Bateman M., Katz N., Structure in additively nonsmoothing sets, 14 Apr. 2011, arXiv: 1104.2862v1 [math.CO]

[3] Bourgain J., “More on the sum-product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl

[4] Bourgain J., “Estimates on exponential sums related to the Diffie–Hellmann distributions”, GAFA (to appear)

[5] Carbery A., “A multilinear generalization of the Cauchy–Schwarz inequality”, Proc. AMS (to appear)

[6] Carbery A., An automatic proof of a multilinear generalization of the Cauchy–Schwarz inequality, Preprint

[7] Glibichuk A. A., Konyagin S. V., “Additive properties of product sets in fields of prime order”, Additive combinatorics, CRM Proc. Lecture Notes. AMS, 43, Providence, 2007, 279–286 | MR | Zbl

[8] Gowers W. T., “A new proof of Szemerédi's theorem for arithmetic progressions of length four”, Geom. Func. Anal., 8 (1998), 529–551 | DOI | MR | Zbl

[9] Gowers W. T., “A new proof of Szemerédi's theorem”, Geom. Func. Anal., 11 (2001), 465–588 | DOI | MR | Zbl

[10] Jones T. G. F., Roche-Newton O., Improved bounds on the set $A(A+1)$, arXiv: 1205.3937v1 [math.CO] | MR

[11] Horn R., Johnson C., Matrix Analysis, Cambridge University Press, Cambridge, 1985 | MR | Zbl

[12] Iosevich A., Konyagin S. V., Rudnev M., Ten V., “On combinatorial complexity of convex sequences”, Discrete Comput. Geom., 35 (2006), 143–158 | DOI | MR | Zbl

[13] Konyagin S. V., “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, Sovremennye problemy teorii chisel i ee prilozheniya. Aktualnye problemy, IV Mezhdunarodnaya konferentsiya, v. III, MGU, M., 2002, 86–114 | MR

[14] Konyagin S. V., Rudnev M., On new sum-product type estimates, Preprint | MR

[15] Li L., On a theorem of Schoen and Shkredov on sumsets of convex sets, arXiv: 1108.4382v1 [math.CO]

[16] Li L., Roche-Newton O., Convexity and a sum-product type estimate, arXiv: 1111.5159v1 [math.CO] | MR

[17] Rudnev M., An improved sum-product inequality in fields of prime order, arXiv: 1011.2738v2 [math.CO] | MR

[18] Sanders T., Approximate (abelian) groups, 3 Dec. 2012, arXiv: 1212.0456v1 [math.CA] | MR

[19] Schoen T., New bounds in Balog–Szemerédi–Gowers theorem, Preprint

[20] Schoen T., Shkredov I. D., “Additive properties of multiplicative subgroups of $\mathbb{F}_p$”, Quart. J. Math., 63:3 (2012), 713–722 | DOI | MR | Zbl

[21] Schoen T., Shkredov I. D., “On sumsets of convex sets”, Comb. Probab. Comput., 20 (2011), 793–798 | DOI | MR | Zbl

[22] Schoen T., Shkredov I. D., Higher moments of convolutions, 21 Sep. 2012, arXiv: 1110.2986v3 [math.CO] | MR

[23] Shkredov I. D., “O mnozhestvakh s malym udvoeniem”, Matem. zametki, 84:6 (2008), 927–947 | DOI | MR | Zbl

[24] Shkredov I. D., “Some applications of W. Rudin's inequality to problems of combinatorial number theory”, Unif. Distrib. Theory, 6:2 (95–116), 2011 | MR | Zbl

[25] Shkredov I. D., Some new inequalities in additive combinatorics, arXiv: 1208.2344v2 [math.CO]

[26] Shkredov I. D., “On Heilbronn's exponential sum”, Quart. J. Math. | DOI

[27] Vyugin I. V., Shkredov I. D., “Ob additivnykh sdvigakh multiplikativnykh podgrupp”, Matem. sb., 203:6 (2012), 81–100 | DOI | MR | Zbl

[28] Tao T., Vu V., Additive combinatorics, Cambridge University Press, Cambridge, 2006 | MR