Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2013_74_1_a1, author = {S. V. Shaposhnikov}, title = {The {Fokker--Planck--Kolmogorov} equations with a potential and a non-uniformly elliptic diffusion matrix}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {17--34}, publisher = {mathdoc}, volume = {74}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a1/} }
TY - JOUR AU - S. V. Shaposhnikov TI - The Fokker--Planck--Kolmogorov equations with a potential and a non-uniformly elliptic diffusion matrix JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2013 SP - 17 EP - 34 VL - 74 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a1/ LA - ru ID - MMO_2013_74_1_a1 ER -
%0 Journal Article %A S. V. Shaposhnikov %T The Fokker--Planck--Kolmogorov equations with a potential and a non-uniformly elliptic diffusion matrix %J Trudy Moskovskogo matematičeskogo obŝestva %D 2013 %P 17-34 %V 74 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a1/ %G ru %F MMO_2013_74_1_a1
S. V. Shaposhnikov. The Fokker--Planck--Kolmogorov equations with a potential and a non-uniformly elliptic diffusion matrix. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 17-34. http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a1/
[1] Bogachev V. I., Krylov N. V., Rekner M., “Ellipticheskie i parabolicheskie uravneniya dlya mer”, UMN, 64:6 (2009), 5–116 | DOI | MR
[2] Bogachev V. I., Rekner M., Shaposhnikov S. V., “Globalnaya regulyarnost i otsenki reshenii parabolicheskikh uravnenii”, TVP, 50:4 (2005), 652–674 | DOI
[3] Bogachev V. I., Rekner M., Shaposhnikov S. V., “Otsenki plotnostei statsionarnykh raspredelenii i perekhodnykh veroyatnostei diffuzionnykh protsessov”, TVP, 52:2 (2007), 240–270 | DOI
[4] Bogachev V. I., Rekner M., Shaposhnikov S. V., “Polozhitelnye plotnosti perekhodnykh veroyatnostei diffuzionnykh protsessov”, TVP, 53:2 (2008), 213–239 | DOI
[5] Porper F. O., Eidelman S. D., “Dvustoronnie otsenki fundamentalnykh reshenii parabolicheskikh uravnenii vtorogo poryadka i nekotorye ikh prilozheniya”, UMN, 39:3 (1984), 107–156 | MR | Zbl
[6] Shaposhnikov S. V., “Regulyarnost i kachestvennye svoistva reshenii parabolicheskikh uravnenii dlya mer”, TVP, 56:2 (2011), 318–350 | DOI
[7] Shaposhnikov S. V., “Otsenki reshenii parabolicheskikh uravnenii dlya mer”, Doklady RAN, 434:4 (2010), 454–458 | Zbl
[8] Aronson D. G., Serrin J., “Local behavior of solutions of quasilinear parabolic equations”, Arch. Rat. Mech. Anal., 25 (1967), 81–122 | DOI | MR | Zbl
[9] Aibeche A., Laidoune K., Rhandi A., “Time dependent Lyapunov functions for some Kolmogorov semigroups perturbed by unbounded potentials”, Arch. Math. Basel, 94:6 (2010), 565–577 | DOI | MR | Zbl
[10] Bogachev V. I., Da Prato G., Röckner M., “On parabolic equations for measures”, Comm. Partial Diff. Eq., 33:1–3 (2008), 397–418 | DOI | MR | Zbl
[11] Bogachev V. I., Krylov N. V., Röckner M., “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Comm. Partial Diff. Eq., 26:11–12 (2001), 2037–2080 | DOI | MR | Zbl
[12] Bogachev V. I., Röckner M., Shaposhnikov S. V., “On uniqueness problems related to the Fokker–Planck–Kolmogorov equation for measures. Problems in mathematical analysis”, J. Math. Sci. New York, 179:1 (2011), 7–47 | DOI | MR
[13] Laidoune K., Metafune G., Pallara D., Rhandi A., “Global Properties of transition kernels associated with second-order elliptic operators”, Parabolic Problems, Progress in Nonlinear Diff. Eq., Their Appl., 80, 2011, 415–432 | MR | Zbl
[14] Metafune G., Pallara D., Rhandi A., “Global properties of transition probabilities of singular diffusions”, TVP, 54:1 (2009), 116–148 | DOI | MR | Zbl
[15] Moser J. A., “Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math., 17 (1964), 101–134 | DOI | MR | Zbl
[16] Spina C., “Kernel estimates for a class of Kolmogorov semigroups”, Arch. Math. Basel, 91:3 (2008), 265–279 | DOI | MR | Zbl