The Fokker--Planck--Kolmogorov equations with a potential and a non-uniformly elliptic diffusion matrix
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 17-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study solutions of the Fokker–Planck–Kolmogorov equation with unbounded coefficients and a non-uniformly elliptic diffusion matrix. Upper bounds for solutions are obtained. In addition, new estimates with a Lyapunov function are obtained.
@article{MMO_2013_74_1_a1,
     author = {S. V. Shaposhnikov},
     title = {The {Fokker--Planck--Kolmogorov} equations with a potential and a non-uniformly elliptic diffusion matrix},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {17--34},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a1/}
}
TY  - JOUR
AU  - S. V. Shaposhnikov
TI  - The Fokker--Planck--Kolmogorov equations with a potential and a non-uniformly elliptic diffusion matrix
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 17
EP  - 34
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a1/
LA  - ru
ID  - MMO_2013_74_1_a1
ER  - 
%0 Journal Article
%A S. V. Shaposhnikov
%T The Fokker--Planck--Kolmogorov equations with a potential and a non-uniformly elliptic diffusion matrix
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 17-34
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a1/
%G ru
%F MMO_2013_74_1_a1
S. V. Shaposhnikov. The Fokker--Planck--Kolmogorov equations with a potential and a non-uniformly elliptic diffusion matrix. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 17-34. http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a1/

[1] Bogachev V. I., Krylov N. V., Rekner M., “Ellipticheskie i parabolicheskie uravneniya dlya mer”, UMN, 64:6 (2009), 5–116 | DOI | MR

[2] Bogachev V. I., Rekner M., Shaposhnikov S. V., “Globalnaya regulyarnost i otsenki reshenii parabolicheskikh uravnenii”, TVP, 50:4 (2005), 652–674 | DOI

[3] Bogachev V. I., Rekner M., Shaposhnikov S. V., “Otsenki plotnostei statsionarnykh raspredelenii i perekhodnykh veroyatnostei diffuzionnykh protsessov”, TVP, 52:2 (2007), 240–270 | DOI

[4] Bogachev V. I., Rekner M., Shaposhnikov S. V., “Polozhitelnye plotnosti perekhodnykh veroyatnostei diffuzionnykh protsessov”, TVP, 53:2 (2008), 213–239 | DOI

[5] Porper F. O., Eidelman S. D., “Dvustoronnie otsenki fundamentalnykh reshenii parabolicheskikh uravnenii vtorogo poryadka i nekotorye ikh prilozheniya”, UMN, 39:3 (1984), 107–156 | MR | Zbl

[6] Shaposhnikov S. V., “Regulyarnost i kachestvennye svoistva reshenii parabolicheskikh uravnenii dlya mer”, TVP, 56:2 (2011), 318–350 | DOI

[7] Shaposhnikov S. V., “Otsenki reshenii parabolicheskikh uravnenii dlya mer”, Doklady RAN, 434:4 (2010), 454–458 | Zbl

[8] Aronson D. G., Serrin J., “Local behavior of solutions of quasilinear parabolic equations”, Arch. Rat. Mech. Anal., 25 (1967), 81–122 | DOI | MR | Zbl

[9] Aibeche A., Laidoune K., Rhandi A., “Time dependent Lyapunov functions for some Kolmogorov semigroups perturbed by unbounded potentials”, Arch. Math. Basel, 94:6 (2010), 565–577 | DOI | MR | Zbl

[10] Bogachev V. I., Da Prato G., Röckner M., “On parabolic equations for measures”, Comm. Partial Diff. Eq., 33:1–3 (2008), 397–418 | DOI | MR | Zbl

[11] Bogachev V. I., Krylov N. V., Röckner M., “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Comm. Partial Diff. Eq., 26:11–12 (2001), 2037–2080 | DOI | MR | Zbl

[12] Bogachev V. I., Röckner M., Shaposhnikov S. V., “On uniqueness problems related to the Fokker–Planck–Kolmogorov equation for measures. Problems in mathematical analysis”, J. Math. Sci. New York, 179:1 (2011), 7–47 | DOI | MR

[13] Laidoune K., Metafune G., Pallara D., Rhandi A., “Global Properties of transition kernels associated with second-order elliptic operators”, Parabolic Problems, Progress in Nonlinear Diff. Eq., Their Appl., 80, 2011, 415–432 | MR | Zbl

[14] Metafune G., Pallara D., Rhandi A., “Global properties of transition probabilities of singular diffusions”, TVP, 54:1 (2009), 116–148 | DOI | MR | Zbl

[15] Moser J. A., “Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math., 17 (1964), 101–134 | DOI | MR | Zbl

[16] Spina C., “Kernel estimates for a class of Kolmogorov semigroups”, Arch. Math. Basel, 91:3 (2008), 265–279 | DOI | MR | Zbl