On the algebra of Siegel modular forms of genus~2
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 1-16

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the methods of the author [Transform. Groups 15, No. 3, 701–741 (2010; Zbl 1225.05015)], we recover the old result of J. Igusa [Am. J. Math. 86, 392–412 (1964; Zbl 0133.33301)], saying that the algebra of even Siegel modular forms of genus 2 is freely generated by forms of weights 4,6,10,12. We also determine the structure of the algebra of all Siegel modular forms of genus 2 and, in particular, interpret the supplementary generator of odd weight as the Jacobian of the generators of even weights.
@article{MMO_2013_74_1_a0,
     author = {\`E. B. Vinberg},
     title = {On the algebra of {Siegel} modular forms of genus~2},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a0/}
}
TY  - JOUR
AU  - È. B. Vinberg
TI  - On the algebra of Siegel modular forms of genus~2
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 1
EP  - 16
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a0/
LA  - ru
ID  - MMO_2013_74_1_a0
ER  - 
%0 Journal Article
%A È. B. Vinberg
%T On the algebra of Siegel modular forms of genus~2
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 1-16
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a0/
%G ru
%F MMO_2013_74_1_a0
È. B. Vinberg. On the algebra of Siegel modular forms of genus~2. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a0/