On the algebra of Siegel modular forms of genus~2
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 1-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the methods of the author [Transform. Groups 15, No. 3, 701–741 (2010; Zbl 1225.05015)], we recover the old result of J. Igusa [Am. J. Math. 86, 392–412 (1964; Zbl 0133.33301)], saying that the algebra of even Siegel modular forms of genus 2 is freely generated by forms of weights 4,6,10,12. We also determine the structure of the algebra of all Siegel modular forms of genus 2 and, in particular, interpret the supplementary generator of odd weight as the Jacobian of the generators of even weights.
@article{MMO_2013_74_1_a0,
     author = {\`E. B. Vinberg},
     title = {On the algebra of {Siegel} modular forms of genus~2},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a0/}
}
TY  - JOUR
AU  - È. B. Vinberg
TI  - On the algebra of Siegel modular forms of genus~2
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2013
SP  - 1
EP  - 16
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a0/
LA  - ru
ID  - MMO_2013_74_1_a0
ER  - 
%0 Journal Article
%A È. B. Vinberg
%T On the algebra of Siegel modular forms of genus~2
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2013
%P 1-16
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a0/
%G ru
%F MMO_2013_74_1_a0
È. B. Vinberg. On the algebra of Siegel modular forms of genus~2. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 74 (2013) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/MMO_2013_74_1_a0/

[1] Allan N. D., “On the commensurability class of the Siegel modular group”, Bull. Amer. Math. Soc., 74 (1968), 115–118 | DOI | MR | Zbl

[2] Clinghera A., Doran C. F., “Lattice polarized $K3$ surfaces and Siegel modular forms”, Adv. Math., 231 (2012), 172–212 | DOI | MR

[3] Dolgachev I. V., “Reflection groups in algebraic geometry”, Bull. Amer. Math. Soc., 45 (2007), 1–60 | DOI | MR

[4] Galluzzi F., Lombardo G., “Correspondences between $K3$ Surfaces”, Michigan Math. J., 52 (2004), 267–277 (with an Appendix by I. Dolgachev) | DOI | MR | Zbl

[5] Igusa J., “On Siegel modular forms of genus two”, Amer. J. Math., 84 (1962), 175–200 | DOI | MR

[6] Igusa J., “On Siegel modular forms of genus two, II”, Amer. J. Math., 86 (1964), 392–412 | DOI | MR | Zbl

[7] Igusa J., “Modular forms and projective invariants”, Amer. J. Math., 89 (1967), 817–855 | DOI | MR | Zbl

[8] Mumford D., Geometric Invariant Theory, Springer, Berlin, 1965 | MR | Zbl

[9] Nikulin V. V., “O faktorgruppakh grupp avtomorfizmov giperbolicheskikh form po podgruppam, porozhdennym 2-otrazheniyami. Algebro-geometricheskie prilozheniya”, Itogi nauki i tekhn. Ser. Sovr. problemy matem., 18, VINITI, M., 1981, 3–114 | Zbl

[10] Oura M., “Invariant theoretical approaches to the ring of Siegel modular forms and the related topics (a survey)”, slides, Siegel Modular Forms and Abelian Varieties, The 4$^{\mathrm th}$ Spring Conference on Modular Forms and Related Topics (Hamana Lake, Japan, February 5–9, 2007)

[11] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa $K3$”, Izv. AN SSSR. Ser. mat., 35:3 (1971), 530–572 | MR | Zbl

[12] Popov V. L., Vinberg E. B., “Teoriya invariantov”, Itogi nauki i tekhn., Sovrem. problemy matem., Fundam. napr., 55, VINITI, M., 1989, 137–309

[13] Vinberg E. B., “O gruppakh edinits nekotorykh kvadratichnykh form”, Matem. sb., 87:1 (1972), 18–36 | MR | Zbl

[14] Vinberg E. B., “Some free algebras of automorphic forms on symmetric domains of type IV”, Transformation Groups, 15:3 (2010), 701–741 | DOI | MR | Zbl

[15] Vinberg E. B., On the algebra of Siegel modular forms of genus 2, Preprint 12-088. SFB 701, Universitat Bielefeld, 2012, 14 pp.