Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2011_72_2_a2, author = {P. I. Kaleda}, title = {Quantitative jump theorem}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {223--247}, publisher = {mathdoc}, volume = {72}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2011_72_2_a2/} }
P. I. Kaleda. Quantitative jump theorem. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 72 (2011) no. 2, pp. 223-247. http://geodesic.mathdoc.fr/item/MMO_2011_72_2_a2/
[ААИШ86] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., Teoriya bifurkatsii, Dinamicheskie sistemy, 5, VINITI, M., 1986
[ВЛЧ05] Van D., Li Ch., Chou Sh.-N., Normalnye formy i bifurkatsii vektornykh polei na ploskosti, MTsNMO, M., 2005
[ГХ02] Dzh. Gukenkheimer, F. Kholms, Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Institut kompyuternykh issledovanii, M.; Izhevsk, 2002
[МП59] Mischenko E. F., Pontryagin L. S., “Vyvod nekotorykh asimptoticheskikh otsenok dlya reshenii differentsialnykh uravnenii s malym parametrom pri proizvodnykh”, Izv. AN SSSR. Ser. matem., 23:5 (1959), 643–660 | MR | Zbl
[МР75] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975
[DR96] Dumortier F., Roussarie R., Canard cycles and center manifolds, Mem. Amer. Math. Soc., 577, Providence, 1996 | MR | Zbl
[F79] Fenichel N., “Geometric singular perturbation theory for ordinary differential equation”, J. of Diff. Eq., 31 (1979), 53–98 | DOI | MR | Zbl
[KS01] Krupa M., Szmolyan P., “Extending geometric singular perturbation theory to nonhyperbolic points — fold and canard points in two dimensions”, SIAM Journal of Math. Anal., 33:2 (2001), 286–314 | DOI | MR | Zbl