Quantitative jump theorem
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 72 (2011) no. 2, pp. 223-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

The jump theorem proved by Mishchenko and Pontryagin more than fifty years ago is one of the fundamental results in the theory of relaxation oscillations. Its statement is asymptotic in character. In this paper we present a quantitative analogue of it. This means the following. The jump theorem describes the map along trajectories (the Poincaré map) from a transversal ‘before the jump’ to a transversal ‘after the jump’. This map is exponentially contracting, and its deviation from the jump point with respect to the slow coordinate is of order $\varepsilon^{2/3}$, where $\varepsilon$ is the small parameter in the fast-slow system. These estimates are asymptotic. Normalizing the system by choosing the scale, we prove that for all $\varepsilon$ no greater than $e^{-12}$, the Poincaré map is defined, its deviation lies in the interval $\varepsilon^{2/3}[e^{-6},e^3]$, and the map itself is a contraction with a coefficient that does not exceed $e^{-k(\varepsilon)}$, where $k(\varepsilon)\ge1/(6\varepsilon)-10^3$. The main tool used in the investigation is the method of blowup with different weights, in the form described by Krupa and Szmolyan.
@article{MMO_2011_72_2_a2,
     author = {P. I. Kaleda},
     title = {Quantitative jump theorem},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {223--247},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2011_72_2_a2/}
}
TY  - JOUR
AU  - P. I. Kaleda
TI  - Quantitative jump theorem
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2011
SP  - 223
EP  - 247
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2011_72_2_a2/
LA  - ru
ID  - MMO_2011_72_2_a2
ER  - 
%0 Journal Article
%A P. I. Kaleda
%T Quantitative jump theorem
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2011
%P 223-247
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2011_72_2_a2/
%G ru
%F MMO_2011_72_2_a2
P. I. Kaleda. Quantitative jump theorem. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 72 (2011) no. 2, pp. 223-247. http://geodesic.mathdoc.fr/item/MMO_2011_72_2_a2/

[ААИШ86] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., Teoriya bifurkatsii, Dinamicheskie sistemy, 5, VINITI, M., 1986

[ВЛЧ05] Van D., Li Ch., Chou Sh.-N., Normalnye formy i bifurkatsii vektornykh polei na ploskosti, MTsNMO, M., 2005

[ГХ02] Dzh. Gukenkheimer, F. Kholms, Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Institut kompyuternykh issledovanii, M.; Izhevsk, 2002

[МП59] Mischenko E. F., Pontryagin L. S., “Vyvod nekotorykh asimptoticheskikh otsenok dlya reshenii differentsialnykh uravnenii s malym parametrom pri proizvodnykh”, Izv. AN SSSR. Ser. matem., 23:5 (1959), 643–660 | MR | Zbl

[МР75] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975

[DR96] Dumortier F., Roussarie R., Canard cycles and center manifolds, Mem. Amer. Math. Soc., 577, Providence, 1996 | MR | Zbl

[F79] Fenichel N., “Geometric singular perturbation theory for ordinary differential equation”, J. of Diff. Eq., 31 (1979), 53–98 | DOI | MR | Zbl

[KS01] Krupa M., Szmolyan P., “Extending geometric singular perturbation theory to nonhyperbolic points — fold and canard points in two dimensions”, SIAM Journal of Math. Anal., 33:2 (2001), 286–314 | DOI | MR | Zbl