Operator Stieltjes integrals with respect to a spectral measure and solutions of some operator equations
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 72 (2011) no. 1, pp. 63-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of Stieltjes integral with respect to the spectral measure corresponding to a normal operator. Sufficient conditions for the existence of this integral are given, and estimates for its norm are established. The results are applied to operator Sylvester and Riccati equations. Assuming that the spectrum of a closed densely defined operator $A$ does not have common points with the spectrum of a normal operator $C$ and that $D$ is a bounded operator, we construct a representation of a strong solution $X$ of the Sylvester equation $XA-CX=D$ in the form of an operator Stieltjes integral with respect to the spectral measure of $C$. On the basis of this result, we establish sufficient conditions for the existence of a strong solution of the operator Riccati equation $YA-CY+YBY=D$, where $B$ is another bounded operator.
@article{MMO_2011_72_1_a2,
     author = {S. Albeverio and A. K. Motovilov},
     title = {Operator {Stieltjes} integrals with respect to a spectral measure and solutions of some operator equations},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {63--103},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a2/}
}
TY  - JOUR
AU  - S. Albeverio
AU  - A. K. Motovilov
TI  - Operator Stieltjes integrals with respect to a spectral measure and solutions of some operator equations
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2011
SP  - 63
EP  - 103
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a2/
LA  - ru
ID  - MMO_2011_72_1_a2
ER  - 
%0 Journal Article
%A S. Albeverio
%A A. K. Motovilov
%T Operator Stieltjes integrals with respect to a spectral measure and solutions of some operator equations
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2011
%P 63-103
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a2/
%G ru
%F MMO_2011_72_1_a2
S. Albeverio; A. K. Motovilov. Operator Stieltjes integrals with respect to a spectral measure and solutions of some operator equations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 72 (2011) no. 1, pp. 63-103. http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a2/

[1] Adamyan V.M., Langer H., Mennicken R., Saurer J., “Spectral components of selfadjoint block operator matrices with unbounded entries”, Math. Nachr., 178 (1996), 43–80 | DOI | MR | Zbl

[2] Adamyan V., Langer H., Tretter C., “Existence and uniqueness of contractive solutions of some Riccati equations”, J. Funct. Anal., 179 (2001), 448–473 | DOI | MR

[3] Akhiezer N.I., Glazman I.M., Theory of linear operators in Hilbert space, Dover Publications Inc., New York, 1993 | MR | Zbl

[4] Albeverio S., Makarov K.A., Motovilov A.K., “Graph subspaces and the spectral shift function”, Can. J. Math., 55:3 (2003), 449–503 ; arXiv: {http://arxiv.org/abs/math/0105142}{math/0105142} | DOI | MR | Zbl

[5] Albeverio S., Motovilov A.K., Selin A.V., “The a priori $\tan\theta$ theorem for eigenvectors”, SIAM J. Matrix Anal. Appl., 29 (2007), 685–697 ; arXiv: math/0512545 | DOI | MR

[6] Bhatia R., Rosenthal P., “How and why to solve the operator equation $AX-XB=Y$”, Bull. London Math. Soc., 29 (1997), 1–21 | DOI | MR | Zbl

[7] Birman M.Sh., Solomyak M.Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, Leningrad, 1980

[8] Birman M.Sh., Solomyak M., “Double operator integrals in a Hilbert space”, Integr. Eq. Oper. Th., 47 (2003), 131–168 | DOI | MR | Zbl

[9] Birman M.Sh., Solomyak M.Z., “Stieltjes double-operator integrals”, Topics in Mathematical Physics, 1, Consultants Bureau, New York, 1967, 25–54 | MR

[10] Birman M.Sh., Solomyak M.Z., “Double Stieltjes operator integrals. II”, Topics in Mathematical Physics, 2, Consultants Bureau, New York, 1968, 19–46

[11] Birman M.Sh., Solomyak M.Z., “Dvoinye operatornye integraly Stiltesa. III”, Problemy matematicheskoi fiziki, v. 6, Teoriya funktsii. Spektralnaya teoriya. Rasprostranenie voln, Izd-vo Leningr. un-ta, Leningrad, 1973, 27–53

[12] Daletskii Yu.L., “Ob asimptoticheskom reshenii odnogo vektornogo differentsialnogo uravneniya”, DAN SSSR, 92:5 (1953), 881–884 | MR | Zbl

[13] Davis C., “Separation of two linear subspaces”, Acta Scient. Math. (Szeged), 19 (1958), 172–187 | MR | Zbl

[14] Davis C., Kahan W.M., “The rotation of eigenvectors by a perturbation. III”, SIAM J. Numer. Anal., 7 (1970), 1–46 | DOI | MR | Zbl

[15] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, Moskva, 1965

[16] Halmos P.R., “Two subspaces”, Trans. Amer. Math. Soc., 144 (1969), 381–389 | DOI | MR | Zbl

[17] Hardt V., Mennicken R., Motovilov A.K., “Factorization theorem for the transfer function associated with a $2\times2$ operator matrix having unbounded couplings”, J. Oper. Th., 48:1 (2002), 187–226 | MR | Zbl

[18] Kostrykin V., Makarov K.A., Motovilov A.K., “Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach”, Contemporary Mathematics (AMS), 327 (2003), 181–198 ; arXiv: 0207125 | DOI | MR | Zbl

[19] Kostrykin V., Makarov K.A., Motovilov A.K., “On the existence of solutions to the operator Riccati equation and the tan$\Theta$ theorem”, Integr. Eq. Oper. Th., 51 (2005), 121–140 ; arXiv: math/0210032 | DOI | MR | Zbl

[20] Kostrykin V., Makarov K.A., Motovilov A.K., “Perturbation of spectra and spectral subspaces”, Trans. Amer. Math. Soc., 359 (2007), 77–89 ; arXiv: 0306025 | DOI | MR | Zbl

[21] Langer H., Markus A., Matsaev V., Tretter C., “A new concept for block operator matrices: the quadratic numerical range”, Linear Algebra Appl., 330 (2001), 89–112 | DOI | MR | Zbl

[22] Markus A.S., Matsaev V.I., “K spektralnoi teorii golomorfnykh operator-funktsii v gilbertovom prostranstve”, Funkts. anal. pril., 9 (1975), 76–77 | MR | Zbl

[23] Mennicken R., Motovilov A.K., “Operator interpretation of resonances arising in spectral problems for $2\times 2$ operator matrices”, Math. Nachr., 201 (1999), 117–181 ; arXiv: funct-an/9708001 | DOI | MR | Zbl

[24] Mennicken R., Shkalikov A.A., “Spectral decomposition of symmetric operator matrices”, Math. Nachr., 179 (1996), 259–273 | DOI | MR | Zbl

[25] Motovilov A.K., “Potentials appearing after removal of the energy-dependence and scattering by them”, Proc. of the Intern. Workshop «Mathematical aspects of the scattering theory and applications», St. Petersburg University, St. Petersburg, 1991, 101–108

[26] Motovilov A.K., “Removal of the resolvent-like energy dependence from interactions and invariant subspaces of a total Hamiltonian”, J. Math. Phys., 36 (1995), 6647–6664 ; arXiv: funct-an/9606002 | DOI | MR | Zbl

[27] Motovilov A.K., Selin A.V., “Some sharp norm estimates in the subspace perturbation problem”, Integr. Eq. Oper. Th., 56 (2006), 511–542 ; arXiv: math/0409558 | DOI | MR | Zbl

[28] Phóng V.Q., “The operator equation $AX-XB=C$ with unbounded operators $A$ and $B$ and related abstract Cauchy problems”, Math. Z., 208 (1991), 567–588 | DOI | MR

[29] Rosenblum M., “On the operator equation $BX-XA=Q$”, Duke Math. J., 23 (1956), 263–269 | DOI | MR | Zbl

[30] Virozub A.I., Matsaev V.I., “O spektralnykh svoistvakh odnogo klassa samosopryazhennykh operator-funktsii”, Funkts. anal. pril., 8:1 (1974), 1–10 | MR | Zbl