Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2011_72_1_a2, author = {S. Albeverio and A. K. Motovilov}, title = {Operator {Stieltjes} integrals with respect to a spectral measure and solutions of some operator equations}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {63--103}, publisher = {mathdoc}, volume = {72}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a2/} }
TY - JOUR AU - S. Albeverio AU - A. K. Motovilov TI - Operator Stieltjes integrals with respect to a spectral measure and solutions of some operator equations JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2011 SP - 63 EP - 103 VL - 72 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a2/ LA - ru ID - MMO_2011_72_1_a2 ER -
%0 Journal Article %A S. Albeverio %A A. K. Motovilov %T Operator Stieltjes integrals with respect to a spectral measure and solutions of some operator equations %J Trudy Moskovskogo matematičeskogo obŝestva %D 2011 %P 63-103 %V 72 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a2/ %G ru %F MMO_2011_72_1_a2
S. Albeverio; A. K. Motovilov. Operator Stieltjes integrals with respect to a spectral measure and solutions of some operator equations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 72 (2011) no. 1, pp. 63-103. http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a2/
[1] Adamyan V.M., Langer H., Mennicken R., Saurer J., “Spectral components of selfadjoint block operator matrices with unbounded entries”, Math. Nachr., 178 (1996), 43–80 | DOI | MR | Zbl
[2] Adamyan V., Langer H., Tretter C., “Existence and uniqueness of contractive solutions of some Riccati equations”, J. Funct. Anal., 179 (2001), 448–473 | DOI | MR
[3] Akhiezer N.I., Glazman I.M., Theory of linear operators in Hilbert space, Dover Publications Inc., New York, 1993 | MR | Zbl
[4] Albeverio S., Makarov K.A., Motovilov A.K., “Graph subspaces and the spectral shift function”, Can. J. Math., 55:3 (2003), 449–503 ; arXiv: {http://arxiv.org/abs/math/0105142}{math/0105142} | DOI | MR | Zbl
[5] Albeverio S., Motovilov A.K., Selin A.V., “The a priori $\tan\theta$ theorem for eigenvectors”, SIAM J. Matrix Anal. Appl., 29 (2007), 685–697 ; arXiv: math/0512545 | DOI | MR
[6] Bhatia R., Rosenthal P., “How and why to solve the operator equation $AX-XB=Y$”, Bull. London Math. Soc., 29 (1997), 1–21 | DOI | MR | Zbl
[7] Birman M.Sh., Solomyak M.Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, Leningrad, 1980
[8] Birman M.Sh., Solomyak M., “Double operator integrals in a Hilbert space”, Integr. Eq. Oper. Th., 47 (2003), 131–168 | DOI | MR | Zbl
[9] Birman M.Sh., Solomyak M.Z., “Stieltjes double-operator integrals”, Topics in Mathematical Physics, 1, Consultants Bureau, New York, 1967, 25–54 | MR
[10] Birman M.Sh., Solomyak M.Z., “Double Stieltjes operator integrals. II”, Topics in Mathematical Physics, 2, Consultants Bureau, New York, 1968, 19–46
[11] Birman M.Sh., Solomyak M.Z., “Dvoinye operatornye integraly Stiltesa. III”, Problemy matematicheskoi fiziki, v. 6, Teoriya funktsii. Spektralnaya teoriya. Rasprostranenie voln, Izd-vo Leningr. un-ta, Leningrad, 1973, 27–53
[12] Daletskii Yu.L., “Ob asimptoticheskom reshenii odnogo vektornogo differentsialnogo uravneniya”, DAN SSSR, 92:5 (1953), 881–884 | MR | Zbl
[13] Davis C., “Separation of two linear subspaces”, Acta Scient. Math. (Szeged), 19 (1958), 172–187 | MR | Zbl
[14] Davis C., Kahan W.M., “The rotation of eigenvectors by a perturbation. III”, SIAM J. Numer. Anal., 7 (1970), 1–46 | DOI | MR | Zbl
[15] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, Moskva, 1965
[16] Halmos P.R., “Two subspaces”, Trans. Amer. Math. Soc., 144 (1969), 381–389 | DOI | MR | Zbl
[17] Hardt V., Mennicken R., Motovilov A.K., “Factorization theorem for the transfer function associated with a $2\times2$ operator matrix having unbounded couplings”, J. Oper. Th., 48:1 (2002), 187–226 | MR | Zbl
[18] Kostrykin V., Makarov K.A., Motovilov A.K., “Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach”, Contemporary Mathematics (AMS), 327 (2003), 181–198 ; arXiv: 0207125 | DOI | MR | Zbl
[19] Kostrykin V., Makarov K.A., Motovilov A.K., “On the existence of solutions to the operator Riccati equation and the tan$\Theta$ theorem”, Integr. Eq. Oper. Th., 51 (2005), 121–140 ; arXiv: math/0210032 | DOI | MR | Zbl
[20] Kostrykin V., Makarov K.A., Motovilov A.K., “Perturbation of spectra and spectral subspaces”, Trans. Amer. Math. Soc., 359 (2007), 77–89 ; arXiv: 0306025 | DOI | MR | Zbl
[21] Langer H., Markus A., Matsaev V., Tretter C., “A new concept for block operator matrices: the quadratic numerical range”, Linear Algebra Appl., 330 (2001), 89–112 | DOI | MR | Zbl
[22] Markus A.S., Matsaev V.I., “K spektralnoi teorii golomorfnykh operator-funktsii v gilbertovom prostranstve”, Funkts. anal. pril., 9 (1975), 76–77 | MR | Zbl
[23] Mennicken R., Motovilov A.K., “Operator interpretation of resonances arising in spectral problems for $2\times 2$ operator matrices”, Math. Nachr., 201 (1999), 117–181 ; arXiv: funct-an/9708001 | DOI | MR | Zbl
[24] Mennicken R., Shkalikov A.A., “Spectral decomposition of symmetric operator matrices”, Math. Nachr., 179 (1996), 259–273 | DOI | MR | Zbl
[25] Motovilov A.K., “Potentials appearing after removal of the energy-dependence and scattering by them”, Proc. of the Intern. Workshop «Mathematical aspects of the scattering theory and applications», St. Petersburg University, St. Petersburg, 1991, 101–108
[26] Motovilov A.K., “Removal of the resolvent-like energy dependence from interactions and invariant subspaces of a total Hamiltonian”, J. Math. Phys., 36 (1995), 6647–6664 ; arXiv: funct-an/9606002 | DOI | MR | Zbl
[27] Motovilov A.K., Selin A.V., “Some sharp norm estimates in the subspace perturbation problem”, Integr. Eq. Oper. Th., 56 (2006), 511–542 ; arXiv: math/0409558 | DOI | MR | Zbl
[28] Phóng V.Q., “The operator equation $AX-XB=C$ with unbounded operators $A$ and $B$ and related abstract Cauchy problems”, Math. Z., 208 (1991), 567–588 | DOI | MR
[29] Rosenblum M., “On the operator equation $BX-XA=Q$”, Duke Math. J., 23 (1956), 263–269 | DOI | MR | Zbl
[30] Virozub A.I., Matsaev V.I., “O spektralnykh svoistvakh odnogo klassa samosopryazhennykh operator-funktsii”, Funkts. anal. pril., 8:1 (1974), 1–10 | MR | Zbl