Operator Stieltjes integrals with respect to a spectral measure and solutions of some operator equations
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 72 (2011) no. 1, pp. 63-103

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of Stieltjes integral with respect to the spectral measure corresponding to a normal operator. Sufficient conditions for the existence of this integral are given, and estimates for its norm are established. The results are applied to operator Sylvester and Riccati equations. Assuming that the spectrum of a closed densely defined operator $A$ does not have common points with the spectrum of a normal operator $C$ and that $D$ is a bounded operator, we construct a representation of a strong solution $X$ of the Sylvester equation $XA-CX=D$ in the form of an operator Stieltjes integral with respect to the spectral measure of $C$. On the basis of this result, we establish sufficient conditions for the existence of a strong solution of the operator Riccati equation $YA-CY+YBY=D$, where $B$ is another bounded operator.
@article{MMO_2011_72_1_a2,
     author = {S. Albeverio and A. K. Motovilov},
     title = {Operator {Stieltjes} integrals with respect to a spectral measure and solutions of some operator equations},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {63--103},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a2/}
}
TY  - JOUR
AU  - S. Albeverio
AU  - A. K. Motovilov
TI  - Operator Stieltjes integrals with respect to a spectral measure and solutions of some operator equations
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2011
SP  - 63
EP  - 103
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a2/
LA  - ru
ID  - MMO_2011_72_1_a2
ER  - 
%0 Journal Article
%A S. Albeverio
%A A. K. Motovilov
%T Operator Stieltjes integrals with respect to a spectral measure and solutions of some operator equations
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2011
%P 63-103
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a2/
%G ru
%F MMO_2011_72_1_a2
S. Albeverio; A. K. Motovilov. Operator Stieltjes integrals with respect to a spectral measure and solutions of some operator equations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 72 (2011) no. 1, pp. 63-103. http://geodesic.mathdoc.fr/item/MMO_2011_72_1_a2/