Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMKZ_2005_a62, author = {R. O. Nezhdanov}, title = {{\CYRO}{\cyrb}{\cyrr}{\cyra}{\cyrt}{\cyrn}{\cyrery}{\cyre} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyri} {\cyrd}{\cyrl}{\cyrya} {\cyro}{\cyrr}{\cyrt}{\cyro}{\cyrt}{\cyrr}{\cyro}{\cyrp}{\cyrn}{\cyro}{\cyrishrt} {\cyrp}{\cyrl}{\cyra}{\cyrs}{\cyrt}{\cyri}{\cyrn}{\cyrery} {\cyrn}{\cyra} {\cyri}{\cyrz}{\cyro}{\cyrt}{\cyrr}{\cyro}{\cyrp}{\cyrn}{\cyro}{\cyrm} {\cyrp}{\cyro}{\cyrl}{\cyru}{\cyrp}{\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyrr}{\cyra}{\cyrn}{\cyrs}{\cyrt}{\cyrv}{\cyre}}, journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi}, pages = {213--216}, publisher = {mathdoc}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMKZ_2005_a62/} }
R. O. Nezhdanov. Обратные задачи для ортотропной пластины на изотропном полупространстве. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the Second All-Russian Scientific Conference (1–3 June 2005). Part 1 (2005), pp. 213-216. http://geodesic.mathdoc.fr/item/MMKZ_2005_a62/
[1] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 872 pp.